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1. Which of the following two messages contains more information?
(a) “The instructor of this tutorial knows how to solve a quadratic equation.”

v longer; X not much new information (little surprise); v useful to judge my qualification.

(b) “The instructor of this tutorial likes roller coasters.”

v new information; X do you really care?

2. Which of the following two pairs of quantities are more strongly correlated:

(a) the volumes and radii of (spherical) glass marbles (of random sizes and colors)

v exact correspondence: V = %WI’3, so once we know r, telling us V gives us no new information.

X nonlinear relation = lower Pearson’s correlation coefficient (see code).

(b) the volumes and masses of glass marbles (of random sizes and colors)

v linear relation: m = pV/, so m and V essentially convey the same information in different units;
X not an exact correspondence: density p varies slightly depending on color;
— even if we know V/, we can still learn some new information by measuring m and vice versa.
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So, What is Information Theory? UNRT &

Information theory provides tools to analyze:
» the quantity (i.e., amount) of information in some data;

» more precisely, the amount of novelty/surprisingness of a piece of information w.r.t.:
(a) prior beliefs (e.g., an ML researcher probably knows high-school math); or

(b) a different piece of information (when quantifying correlations).

Information theory is oblivious to:
P the quality of a piece of information (e.g., its utility, urgency, or even truthfulness).

» how a piece of information is represented in the data, e.g.,
» the volume and radius of a sphere are different representations of the same piece information;

» for a given neural network with known weights, its output cannot contain more information than
its input. => af. thoory can fwv,Je ‘_’ﬂ,"_e_’__."’”_"“;g./ e.g, on how wvob ysefol wfommation an of#.-.,é
mw’e( can ey*»w/‘ From Some. latent refresenfaolﬂ’ﬂ.
P computational costs: compressed representations of the same information are sometimes

easier but often harder to process than their uncompressed counterparts. A\
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Where Are These Tools Useful? NV T

Theoretical bounds for Analyze abstract Data Compression
model performance representation vectors (“Source Coding”)
1.0 Metric Dataset Q
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Wu, A. Tejero-Cantero, .
[Tim Xiao, RB, ICLR 2023] ICLR 2024] [Alexander Conzelmann, RB;
coming soon]
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My Promise for This Tutorial UNRRT &

Why
What for-
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uantifying Information UNIVERSITAT
ying TUBINGEN

[Shannon, A Mathematical Theory of Communication, 1948|

INFORMATION Def. “information content of a message”:
SOURCE TRANSMITTER RECEIVER DESTINATION
| lencode — Jocodod o The minimum number of bits that you
SIGNAL RECEIVED . .
SIGNAL would have to transmit over a noise-free
MESSAGE MESSAGE

channel in order to communicate the
>< (mostly) igacrod message, assuming an optimal encoder

in Es Eotorial and decoder.
NOISE
SOURCE “ ., "
Fig. 1—Schematic diagram of a general communication system. > Wh at does Optlma | mean ?

» You don't actually have to
construct an optimal encoder &
decoder to calculate this number.
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Agenda CROBINGEN

1 2

Theory of Applications to
Communication Machine Learning

A A
(- Iy A\

Derive & interpret: Brief code example of When are Limitations of
» information content | |data compression with information- information
» (conditional) entropy| |a deep-learning model theoretical theory, and
» KL divergence (GPT-2). metrics useful? common pitfalls.
» mutual information

» data processing ineq.
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Data Compression: Precise Problem Setup Rt v
sender receiver

— message X — —> bit string S — — reconstructe/d

source C C message X

Assumptions:

» the bit string S is sent over a noise free channel (we won't cover channel coding);

. . S| z)cl)] < @ Ux€X bot fet. xr2]CG] may be
» Jossless compression: we require that X' = X; Qst=1e6al o U.,(,,,afva/e,()

» S may have a different length |S| for different messages: S € {0,1}" := U {0,1}"

o0
> But: the encoder must not encode any information in the length of S alone (see next slide).

P> Before the sender sees the message, sender and receiver can communicate arbitrarily
much for free in order to agree on a code C : message space X — {0,1}".

> Goal: find a valid code C that minimizes the expected bit rate Ep,_ x)[|C(X)|].
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EBERHARD KARLS

What’s a “Valid Code”? (Unique Decodability) RGO

sender receiver
data encoder . . decoder reconstructed
— message X —> — bit stringS — 1| — )
source C C message X

Recall:
» The bit string S = C(X) € {0,1}" can have different lengths for different messages X.

» We want to interpret its length |S| as the amount of information in the message X.

> Seems to make sense: if the sender sends, e.g., a bit string of length 3 to the receiver, then they
can't communicate more than 3 bits of information ...

> ... unless the fact that |S| = 3 already communicates some information. We want to forbid this.

» Add additional requirement: C must be uniquely decodable:
> Sender may concatenate the encodings of several messages: S := C(X1) || C(X2) || C(X3) || .-

> Upon receiving S, the receiver must still be able to detect where each part ends.
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Source Coding Theorem v

Theorem (Shannon, 1949): Consider a data source P(X) over a discrete message space X.

» The bad news: in expectation, lossless compression can't beat the entropy:
V uniquely decodable codes C:  Ep[|C(X)|] > Ep[— log, P(X)] =: Hp(X).

» The good news: but one can get quite close (and not just in expectation):

Vse ‘P«-/ L mease

it wllows vs o
949/// re(cw[nﬂ(e
(o oliFlor cutiale
f‘wwl‘v) the bit rate
of an 7f'-4 wolp

Moyt havi
QXEI o le Cnu;'i;cz ES

» Also, we can keep the total overhead < 1 bit even when encoding several messages. 7

3 uniquely decodable code C:
V messages x € X: |C(x)| < — logy, P(X=x) + 1.
(= Ep[|C(X)|] < Hp(X) +1)

— log, P(X =x) is the contribution of message x to the bit rate of an optimal code
when we amortize over many messages. It is called “information content of x”.
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The Kraft-McMillan Theorem [Kraft, 1949: McMillan, 1956]  “RiR"

(a) V uniquely decodable codes C : X — {0,1}" over some message space X’:
(aok wa "‘)’ec'("ln’" — ZZﬁC(X)\ <1 (“Kraft inequality”).

aug(‘ Ll nwmq(. Sum)
xeX
Interpretation: we have a finite budget of “shortness” for bit strings:
> Interpret 271€™)| as the “shortness” of bit string C(x).
» The sum of all “shortnesses” must not exceed 1.

= If we shorten one bit string then we may have to make another
bit string longer so that we don't exceed our “shortness budget”.

(b) V functions £ : X — N that satisfy the Kraft inequality (i.e., 3 27/ < 1):
3 uniquely decodable code C; with |Cy(x)| = ¢(x) VxeX. X

Why is this theorem useful? = min Ep[bit rate] = min Ep[|C(X)|] = min Ep[|C(X)]]

C:uniq. C: satisfies
decodable Kraft ineq.
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Preparations for Proof of KM Theorem TUMNGER
Definition: For a code C : X — {0,1}", define

C X = {0,1}, C*((x1, %, %)) == Cla) || Cx) || --- || Clx).
(Thus: C is uniquely decodable <= C* is injective)

Lemma:
C be a uniquely decodable code over X’;

> let: n € Np;
Y, = {x € X* with |C*(x)| = n}.
> then: |Y,| < 2"
Proof: C*is mjective == I1,| =|C*(Y,)|

" h = V1< 2” |
o d = Il = | <
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Proof of Part (a) of KM Theorem RtV

Lemma (reminder): |Y,| < 2" where Y, := {x € X* with |C*(x)| = n}, C uniq. dec.
Claim (reminder): C is uniquely decodable —> > 2-1€0I < 1.

Let k€ N éi—\,/ L
x (o % -ZlCCx;>[
<=0 e )') s~2 f)’) (z_ z '“J’) S o
X €X x,€X xEX XGX" :'C*(E)]
(i) if X is finite: ) ky
Let = '”:;'“*Nm = teex® 1)< ky = X< Y,
X e
LY c*mz ky 0 |
=>r 52,_2: ‘2 IYMIL $[<b»+l $V[<e//\/‘-,._sx+_
nzo mey, n=o ‘e - e
2" . e S
(ii) if X is countably infinite: QLCfMS?O /Nilﬁi{[_)\ rdelEng A
I3 R (443 . -
w.r ! X=N ZZ{ ol ZZ :/QMMZZ[CCXM&]_
xex X=1 N> oo x=1
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Proof of Part (b) of KM Theorem W;Z;Bpfo,z et RONGR
o) e I h,? aln

Claim (reminder): ZZ ) <1 = 3Juniq. dec&code C7WIth rg( )| ={(x) VxeX.
A

binary nombers that bo ' o 10" lie
Y / y “a W,
x€ 1 i 64@, oraﬂie v,fe-/ :/q( 7& S 2€ 2

Algorithm 1: Construction of C,.

Initialize € < 1; : - @1 : [2'Z
i ' ' 1 ‘ C()="10" < (- ‘;DI%

for x € X' in order of nonincreasing ((x) do g g r
Update £ <+ & — 2_£(X); ~ Sort by decreasing ((x )(O “ 2772
Write £ € [0,1) in binary: £ = (0.777...),; then cas op. oo, !

’ . . I ,n Bo o 6‘1 ool g
Set Cy(x) to the first ¢(x) bits after the “0. a,.ifieasi’;s; brs o )o
(pad with trailing zeros if necessary); N s Ve oher cole /,{,,/5 br(ay e

message X message x
g Can Bz Ia Vaage -(b«w( g

> o ofier GO, 7" cam bipin w10

Claim: the resulting code C; is uniquely decodable.

» We even show: C is prefix free: Vx € X: Cy(x) is not the beginning of any Cy(x'), x'#x.
r:u:q(/ v, A(ﬂe‘
» Formalization of this proof: see solutions to Problem 2.1 on this problem set: eyt

https://robamler.github.io/teaching/compress23/problem-set-02-solutions.zip
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NO“Q no exn C‘a—/n}

Example: Sum of Two Fair 3-Sided Dice/cw = - p=fic J# U §
a{o/#'ereq/' 6“10&‘/‘17 C(XI) 'LLIX’;FK

x | possible throws | P(X =x) [ £(x) | Ci(x) step sel= , (1. 000), | =>Ce is v M[/ Aecodable
2 |60 1/9 3 | 1 @ g€ l-7= (.00, ~0000), = (0.1]),
31606, 00 2/9 ) lo @ 5e(o./m)Z -2'2:(0‘qu -(o.0l)= (0.19),

4 (B, 0L, B0 1/3 2 |0l ® s lo), - (0.00), = (0.2,

5 (L9, D6 2/9 2 oo © s< (00, ~ oo, = (6.0,

6 |LILI 1/9 3 o/ @ s« (0.111),~2* = .1}, ~(0.001), = (0.110),

» Check if ¢ satisfies Kraft inequality: > 270 =273 L3xy2=14 < 1v
xeX
» Question: how should we choose £ : X — N for a given model P of the data source?
(E.u.m..mcaj]» typical goal: minimize the expected bit rate Ep[¢(X)] (with the constraint >° .2 ") < 1).
Rorm €xparss'on for

cff-\«t( f(KJ '3
uok diFoonl.oble

>, optimally: by Huffman coding (comp. cost  |X|log|X|, i.e., exponential in message length).

> near optimally: via information content; — bounds on optimal Ep[¢(X)] (next slide).

Robert Bamler - Universitat Tiibingen - Tutorial on Information Theory With Applications to Data Compression + IMPRS-IS Boot Camp 2024 - slides and code available at https://bamler-1lab.github. io/bootcanp24 15

Optimal Choice of Target Length /: X — N UNIVESTAT
» Constrained optimization problem: O— N EXZ R | (consbatat (f'))
> Minimize Ep[¢(X)] =X;(P(X=x) (x)over £ | 263 oplh (2 -z(x))J = exp [-06) 2.2]
" with the constraints: (i)g;(ﬂ(x) =1 ¥x: 0= aii) - 55@) 2= [P(X-x )JA6) +

(i) ¢(x) € N Vxe X +*€><P£ ffx)ﬁ'ﬂz](
=PlX=x) - \ (fa2) 27°9

» lIdea: relax constraint: (ii') /(x) € Rug Vx€X
So(ua 'Pow ,e(;()‘

= Minimization runs over more functions /. Pk
X =x =
— Jower bound: inf Ep[{(X)] < inf Ep[t(X)] | £0) = ~Log, ~22 = - Loy P(X=x)
DX LX) S0y ) b7 @\%@21(0 #7
» Observation: solution satisfies: (i') 327/ =1 nsert Co};,()rqlhl sl
XEX =22 Z PX=x)
» Enforce via Lagrange multiplier A€R:
find stationary point (w.r.t. both £ and \) of £(£,\) :=3" P(X=x) £(x) + A(3_ 27 —1).

& P2 f
xeX xeX
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Proof of Source Coding Theorem UNRT &
» Solution of the relaxed optimization problem: ¢(x) = —log, P(X =x) € R>o.
—— —
“information content"

» Let's now constrain ¢(x) again to integer values Vx € X'

= lower bound on expected bit rate (“the bad news"):

Ep[|C(X)|] > Ep[— log, P(X =x)] V uniquely decodable C.

Hp(X)

» Upper bound on the optimal expected bit rate (“the good news"):
> Shannon Code: set {(x) := [—log, P(X=x)] € N.
> Satisfies Kraft inequality: >, 27171082 PX=01 < S~ 2logaP(X=x) — 1,
= 3 uniquely decodable code C; with:
|Co(x)] = 4(x) < —log, P(X=x)+1 V¥xeX.
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Quantifying Uncertainty in Bits (for Discrete Data) "M

» Information content: — log, P(X =x): The (amortized) bit rate for encoding the
given message x with a code that is optimal (in expectation) for the data source P.
> Entropy: Hp(X) = Ep|[—log, P(X)| = H[P(X)| = H[P]: The expected bit rate for
encoding a (random) message from data source P with a code that is optimal for P.
= How many bits does receiver need (in expectation) to reconstruct X?
= How many bits does receiver need (in expectation) to resolve any uncertainty about X?
> Cross entropy: H[P, Q] = Ep[—log, Q(X)| > H[P]:
The expected bit rate when encoding a message from data source P with a code that is
optimal for a model @ of the data source (= practically achievable expected bit rate).

— We'd want to minimize this over the model @. — Maximum likelihood estimation.
> Kullback-Leibler divergence: Dx (P || Q) = H[P. Q] — H[P] = Ep [f log, %} > 0:

Overhead (in expected bit rate) due to a mismatch between the true data source P and
. " N ' P, cxabe oo (FEx, whe.e Plxzy)> 0 bot Q(X=,)=0).
its model @ (also called “relative entropy”). <5 lnle pre et ptind cocke i ol G coud et Cucoole ,
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Agenda TOBINGER
Theory of Applications to
Communication Machine Learning

A A
(- Iy A\

Derive & interpret: Brief code example of When are Limitations of
» information content | |data compression with information- information
» (conditional) entropy| |a deep-learning model theoretical theory, and
» KL divergence (GPT-2). metrics useful? common pitfalls.
» mutual information

» data processing ineq.
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Example 1: Text Compression With GPT-2 N 3

Autoregressive language model:
» Message x is a sequence of tokens: X = (x1, X2, ..., X,).

> P(X) = P(X1) P(Xa| X1) P(X3 | X1, Xo) P( Xy | X1, X0, X3) ... P(Xn| X1, Xa, ... Xp_1).
We *é'sz exfpclﬂl‘h'n ovew- our m/g[, Pliﬂe rcﬂ‘lv %“14 ovt, the

H . te (coltvogl) dole gon, recess . o theels a ga/a/}r(lxm&l ovabeod
CompreSSIon Strategy. e Co M'J’[ m.‘sm,{l‘ fﬁc*wé Lon 't Jis(us; /te»e)

1. Encode x; with an optimal code for P(X}). — E(ﬁ#bits] < H[P(X1)] +1
2. Encode x, with an optimal code for P(Xx| Xy =x1). — Eg[#bits] < H[P(Xy| X1 =x)]+1
3. And so forth ... (do cools ofm/% in swee ol as ewcods)

Technicalities: | Bttps://bamler-lab.github.io/bootcamp24 — Colab notebook }

> Up to 1 bit of overhead per token? — Use a stream code: amortizes over tokens.
» The model expects that x; = (beginning of sequence). — Redundant, don't encode.

» How does the decoder know when to stop? — Use an (end of sequence) token.
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Takeaways From Our Code Example U

» Near-optimal compression performance is achievable in practice.

= [Information content accurately estimates #bits needed in practice (even if it's fractional).]

» Data compression is intimately tied to probabilistic generative modeling.
» “Don’t transmit what you can predict.” =—> generative modeling

» But still allow communicating things we wouldn't have predicted. = probabilistic modeling

» Decoding ~ generation (= sampling from a probabilistic generative model P):
> To sample a token x;, one injects randomness into P(X; | X1.j—1 =X1.:i-1)-
> To decode a token x;, one injects compressed bits into (a code for) P(X; | X1:j—1=X1:j-1).

» Decoding from a random bit string would be exactly equivalent to sampling from P.

» Data compression is highly sensitive to tiny model changes (e.g., inconsistent rounding).
> Compression codes C are “very non-continuous” (because they remove redundancies by design).

— True data compression usually makes it harder to process information.
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Example 2: Compression Wiih of Neural Networks UM T

VGG16 ResNet50

o—

32
> 0.6 1 0.8 A
O
o
>
8 0 4 - 06 T
©
Ko} 6 quantize without ]
B 0.2 ®= bit rate penalty 0.4
£ quantize with 0.2 [Alexander Conzelmann,

0.0 bit rate penalty ) RB; coming soon]
0.0 0.5 1.0 1.5 2.0 2.5 0.00 0.25 0.50 0.75 1.00
bits per weight bits per weight

» Method: quantize network weights (= round to a discrete grid), then compress losslessly.
» Observation: information content remains meaningful even in the regime < 1bit.
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Agenda TOBINGER
Theory of Applications to
Communication Machine Learning

A A
(- Iy A\

Derive & interpret: Brief code example of When are Limitations of
» information content | |data compression with information- information
» (conditional) entropy| |a deep-learning model theoretical theory, and

» KL divergence (GPT-2). metrics useful? common pitfalls.
» mutual information

» data processing ineq.
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Joint, Marginal, and Conditional Entropy TOBINGER

Consider a data source P(X, Y) that generates pairs (x,y) ~ P:
P(X,Y)=P(X)P(Y|X)=P(Y)P(X]|Y).
» Joint information content, i.e., information content of the entire message (x, y):
—logy, P(X=x,Y=y) = —log, P(X=x) — log, P(Y =y | X=x).
» Joint entropy:
Hp((X,Y)) = Ep(x,v)[— loga P(X., Y)] = Epx) p(vix)[ — loga P(X) — logy P(Y[X)]
= Epp)[— loga P(X)] + Exwpp)[ Ep(vix—x)l—loga P(Y | X=x)] |;

VT
(marginal) entropy Hp(X) =: Hp(Y | X=x) = entropy of the
conditional distribution P(Y | X =x)

~
=: conditional entropy Hp(Y | X)

> ‘HP((X, Y)) = Hp(X) + Hp(Y | X) = Hp(Y) + Hp(X| Y)
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Mutual Information U
Reminder: HP(Y | X) = Ep[ — |Og2 P(Y ’ X)] = EXNP(X) [ Ep(y‘xix)[* |og2 P(Y ‘ X:X)] ] ;
HP((X, Y)) = HP(X) + HP(Y | X) Hp(Y | X=x) = entropy of the

conditional distribution P(Y | X =x)

Let’s encode a given message (x,y): Expected bit rate: 4\
) rocte» with opimalcode for PLY | X ). ) A7
Y ot dotn s POV He((X ) i

. . \
) ronde with piimat cote o (). " A0 [ et [
) rocte » with apimal code o P He(X) He(Y)
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Interpretations of the Mutual Information /p(X; Y) ey T

The following expressions for /p(X; Y) are equivalent: Hp((X, Y)) ,P®
©) /p(X; Y) = H,D(X) + H,D( Y) - H,D((X, Y)) Hp(X) Hp(Y)
= D (P(X, Y) || P(X) P(Y)) >0 Hp(X) He(Y1X) | 1,2
Interpretation: how much would ignoring correlations /P® Hp(X|Y) Hp(Y)
between X, Y hurt expected compression performance?
K('.e./ Qow mauy bifs can we Seve Note: “i tation” |
@ /P(X; Y) _ HP(Y) _ HP(Y ‘ X) £ e bube orvelaliug ;%amwu) : ote: “in expt_ac. ation” is an
. . . ) important qualifier here.
Interpretation: how many bits of information does Conditioning on a specific x
knowledge of X tell us about Y (in expectation)? can increase the entropy of Y:
(reduction of uncertainty, “expected information gain”) Hp(Y | X) < Hp(Y) (always),
@ Ip(X;Y) = Hp(X) — Hp(X | Y) but:
Interpretation: how many bits of information does Hp(Y | X=x) > Hp(Y) is
knowledge of Y tell us about X (in expectation)? poeslls fies canms ()]
Continuous Data (Pedestrian Approach) UNT 3

Recall: optimal lossless code C,pt for a data source P: ‘HP(X) < Ep[| Copt(X)|] < Hp(X) + 1’

» Lossless compression is only possible on a discrete (i.e., countable) message space X

lossless code C (injective) injective

(Because X {0,1} N.)
Simple lossy compression of a message X € R™ (an “act of desperation” — M.P.)
» Require that reconstruction X’ satisfies | X! — Xj| < % Vie{1,...,n} for some ¢ > 0.

> Let X :=d xround(3X). = |X;—X;| <3 Vi
» Compress X € 0Z" losslessly using induced model P()A() — Reconstruction X' = X.
| 2

P(X=%) = P(x .>"<1[*f—%,%+%‘>) = / gy POV 8TR(3) - 0(8")

i=1 [Xi—§7Xi+§

> EH*’D// 0Fq cmlfwwus
~— "p(%) logy (6"p(R)) o, e varieble s
| 2 HP(X) ~ de(gzn(s p(X) ng( P “differential entropy” hp(X) BN ",(’eﬁh-ep/l;f Lo om
mf;ni Cms*(z«u/*
~ - /p(X) (logy p(x) + nlogy 8) d"x = Ep[— logy p(X)] + nlogy(1/8) -set
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How Does Discretization Relate to IMPRS-IS? & uliii §

Physics in the 19th century:

» Electrodynamics: unified theory of electric+magnetic forces (Lorentz, Maxwell, ~1860)
— understanding of light — radio communication (Marconi, ~1895)

» Thermodynamics: temperature, heat, entropy, steam engine (Carnot process)

Problem: these two theories are incompatible when trying to explain the spectrum of the sun.
» “Classical” theory: it should radiate co energy (“ultraviolet catastrophe”).
» Electrodynamics: energy E¢ of electromagnetic field at frequency f is a continuous quantity Vf.
» Thermodynamics: thus, in thermodynamic equilibrium, E[Ef] = %kBT vf.

» Observation: OK for low frequencies (3 < c0), wrong for high frequencies (3 00).

» Max Planck, 1900: discrepancies can be resolved if we assume that | Er € hfZ Vf|.

» Quantum mechanics becomes relevant on energy scales E < hf, with the Planck constant
h~ 6.626x103* %; foundation of modern chemistry, semiconductor industry, ...
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EBERHARD KARLS

Examples of Differential Entropies ;fejj;? Rt v

» Uniform distribution: P(X) = U(X)

> Density: p(x) = Vxe X

1
Vol(X)
1
> Differential entropy: hp(X) = Ep[—log, p(X)] =Ep {— log, W} = log, (Vol(X))
> Note: if Vol(X) < 1 then hp(X) < 0. (. L, acidic solufion with pH<0; not 9/9(:/1:[)
— Nothing to see here, hp is only meaningful up to an infinite additive constant.

i 10{' Z = 62 PG‘)
» Normal distribution: P(X) = N(1, L) (with X pe R and ¥ Ry 1 ws

1 1 &
» Density: p(x) = N(x; 1, X)) = ————— ex f—foTZ’lx—L} —A:L—ﬁ
ye ) = N ) = s 0| 30— ) E R x| = x
> Differential entropy: hp(X) = Ep[— log, p(X)] = %Iogz(det ¥) 4 g]og2(2ﬁe)
(r/ar/s':klilf clﬂgzé: (1’72 var.aute &7 ('?76 W"’f/ ‘/) const.
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KL-Divergence Between Continuous Distributions U

» Differential entropy (reminder): hp(X) = Ep[— log, p(X)]
— Relation to entropy of discretization X: Hp(X) ~ hp(X) + nlogy(1/6) UmANFNS

> Differential cross entropy (less common): h[P(X), Q(X)] = Ep[— log, q(X)]
— Relation to discretization: H[P()A()7 Q()A()] ~ h[P(X), Q(X)] + nlog,(1/6) 2% o
> Kullback Lelbler divergence between discretized distributions P(X) and Q(X):
D (P(X) || @(%)) = H[P(X). Q(X)] — Hp(X)
~ h[P(X), Q(X)] + nlogy(1/8) — (hp(X) + nlogz(l/é))

B q(X) . pOSSJb\y)
=Ep [— log, p(X)] =: DxL H Q(X 00

—> Interpretation: Dk (P || Q@) = modeling overhead, in the limit of infinitely fine quantization.

> Generalization (density-free): Dk (P || Q) = —/Iog2 (jg) dP
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EBERHARD KARLS

(Variational) Information Bottleneck URUBINGER

» Example: [S-variational autoencoder (similar for supervised models (Alemi et al., ICLR 2017))

semantic
input data representation reconstruction
® encoding @ decoding @
Q(Z|X) P(Z) P(X|Z)

» Loss function: E, _g,t, [EQ(Z‘X:X) [—log P(X=x|2)] + BDx.(Q(Z | X =x) | P(Z))}

information in z ~ Q(Z | X=x) information in z ~ Q(Z | X =x)
» Dy (...||...)=]|for someone who doesn't know x | — for someone who knows x
(i.e., they only know P(Z)) (i.e., they know Q(Z | X =x))

{Capture as much (x-independent) information about z in the prior P(Z) as possible.
Encode as little (unnecessary) information in Q(Z | X =x) as possible.
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Remark: Data Compression With VAEs OB

» So far, no compression: Z still takes up lots of memory (even if its inf. content is low).

» Real compression has to actually reduce Z to its information content: entropy coding

semantic quantized lossy
input data representation representation reconstruction
@ encoding @ quantizing @ decoding @
Q(Z|X) P(Z) P(X|Z)

>
8§
£% T ,
R [Ballé et al., ICLR 2017]

8'(') compressed
10100| bitstring

Robert Bamler « Universitat Tiibingen - Tutorial on Information Theory With Applications to Data Compression « IMPRS-IS Boot Camp 2024 - slides and code available at https://bamler-lab.github.io/bootcamp24 33
Rate/Distortion Trade-off Rt v

» Tuning 3 allows us to trade off bit rate against distortion.

40

[M2] SGA+BB [M3] Minnen (2018)
. (proposed, bits-back) Base Hyperprior
8 [M1] SGA  [M6] Ballé (2018)
(proposed, standalone) Hyperprior Scale-Only
36 [M4] Minnen (2018) —— [M7] Theis (2017) CAE
Context-+Hyperprior [M9] JPEG2K
[MS] Lee (2019)
o 3 Context Adaptive
= —*— [M8] BPG 4:4:4
wn
(A
30 [Yang, RB, Mandt, NeurlPS 2020]
28
26
0.2 0.4 0.6 0.8 1.0 1.2
Bits per pixel (BPP)
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EBERHARD KARLS

Agenda CROBINGEN

1 2

Theory of Applications to
Communication Machine Learning
AN A
[Derive & interpret: Brief code example of\ T When are Limitations of )
» information content | |data compression with information- information
» (conditional) entropy| |a deep-learning model theoretical theory, and
» KL divergence (GPT-2). metrics useful? common pitfalls.
» mutual information
» data processing ineq.
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EBERHARD KARLS

Mutual Information for Continuous Random Vars U5’

X)p(Y
M} (if densities p exist)
p(X7 Y) (ueW discoss won - injechie Fote k)

» Exercise: let X' = f(X), Y/ = g(Y), where f and g are differentiable@functions.

Ip(X; Y) = DxL(P(X,Y) H P(X)P(Y)) =Ep [— log,

Convince yourself that /p is independent of representation, i.e., Ip(X'; Y') = Ip(X; Y).

Example la: p) = nlege l_y_
olons, t |
> P(X) = P(Y) =U([-1,1)) = hp(X) = hp(Y) = logy(2) = 1. 75 | demir,
tne X, y)=7%
U([-1,0 if X <0; -1
s by ) { UL ..
U([O, 1)) If X Z 0 density
p(x,¥)=3
— hp(Y | X) = Eqppay [ hp(Y | X =x)] = logy(1) = 0. 1

» Mutual information: /p(X;Y) = hp(Y)— hp(Y|X)=1—-0=1 bit.
» Interpretation: observing X tells us (only) the sign of Y. == 1 bit of information.
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EBERHARD KARLS

Mutual Information for Continuous Random Vars U5’

Example 1b: non-uniform P(X). y
a if AS [_17 0)1 [)-"’7’«[:1*(1-0()1
> p(y) = (for a € [0,1]) PRz
1—a if y € [0, ].) density
1 plx.y)=1-a
= hp(Y) = - / PU)logz ply) dy 1 .
= —alogy(a) — (1 — a) logy(1 — ) =: Ha(a) iy '
u —170 fX < 0, p(x,y)=« ) .
> P(Y|X)= ( ) (as before) P> iyl I o
Uu(o, 1)) ifX=>0. 1

= hp(Y | X)=0 (as before)
» Mutual information: /p(X;Y) = hp(Y) — hp(Y | X) = Ha(a) — 0 = Hy(a) < 1 bit.

» Interpretation: observing X still tells us sign(Y) with certainty, but sign(Y) now carries
less than one bit of information (in expectation) if o # 3.
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Mutual Information for Continuous Random Vars

Example 1c: back to uniform P(X), but different P(Y | X):
> P(X)=U([-1,1));

density
Plso=5

r(y):l

density  *-3
[ =5

Method 1: /p(X; Y) = hp(Y) — ho(Y | X)

» hp(Y | X) =0 as before.
-1+ 4
T ifyels1-9)ul-1+%-9) 1, °
> ply) = _ "
Ny 1 _a a
= hp(Y)=— /5 2 2logy(3) dy — fili% logy(3) dy — ff% llogy(1)dy =1 —a.
» Interpretation: sign(Y') has one bit of entropy again, but knowing X no longer tells us
sign(Y) with certainty, it only improves our odds of predicting it.

EBERHARD KARLS
UNIVERSITAT

Mutual Information for Continuous Random Vars

TUBINGEN
Example 1c: back to uniform P(X), but different P(Y | X): K
> P(X) =U([-1,1)); el
. . - 5 L
Py x) = | At m9) Xz 7 density
U([-1+4,9) fX<o. 7 7
» X
Method 2: Ip(X; Y) = hp(X) — hp(X | Y) (i e !
: o ay. p(x,y)=73
U{o,1) ifYels1-9); y L
> PX[Y)=4q U(-11) ifYe[-579) T-1
U([-1,0) ifyels—1,-%5).

= hp(X]Y) = Eypiy) (X | Y =)] = 3(1-0) logs(1)+ alogs (2) +-(1-a) logs(1) = .
» Interpretation: sign(X) has one bit of entropy, but a fraction «v of possible observations
of Y won't tell us sign(X) at all (while the other observations of Y tell it with certainty).
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Symmary of Example 1

The mutual information /p(X; Y) takes into account:

Example la:

Example 1b:

Example 1c (Methods 1 & 2):

y y y
11 1] 2
. 1-571
density density
p(x,y)=3 p(x,y)=1-a density
p(x,y)=3%
-1 -1 i 2
> X } > X ! fo X
densit ! ! density -1 .
‘ enslz \ densuti p(x,y):%
p(x.y)=3 plx,y)=a
144
-1 -1 +-1

» with what certainty the new
information is revealed; and

» ... in comparison to
how much we'd know
about Y anyway;

» how much new information
an observation of X reveals

about Y (and vice versa) ... > how probable it is to make

an informative observation.
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Example 2: Gaussian Signal With Gaussian Noise "¢

Consider an analog signal x ~ N(0, 02), sent over a noisy channel (e.g., voltage on a wire).

— Receiver receives a somewhat corrupted signal: y ~ N(x,o?).

Mutual information: /p(X;Y) = hp(Y) — hp(Y | X)
> p(y) = Eppxy[p(y | X)] /NXOJ N(y;x,02)dx = N(y; 0,02 + 0?)

1 1 o2
= Ip(X;Y) = hp(Y) — hp( Y|X):§|og2(0 +0 )—Elogz(af):§|0g2<1+;).

n
Interpretation: o2/0?2 is the signal-to-noise ratio (SNR).

» For SNR — 0, we have Ip(X; Y) — 0; = receiver receives no meaningful information.
» But, as long as SNR > 0, one can still extract some information from the received signal.

» In the theory of channel coding (aka error correction), P(Y | X) models a communication
channel. lts channel capacity C := supp(x) Ip(X; Y) is the number of bits that can be
transmitted noise-free per invocation of the noisy channel (in the limit of long messages).
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EBERHARD KARLS

Data Processing Inequality I: Intuition TOBINGER

Remember when we were all still young and looking at slide 407
P(X) P(Y)}
p(X,Y)

» Exercise: let X' = f(X), Y/ = g(Y), where f and g are differentiable injective functions.
Convince yourself that /p is independent of representation, i.e., Ip(X’; Y') = Ip(X; Y).

Ip(X; Y) = DxL(P(X, Y) | P(X) P(Y)) = Ep |— log, (if densities p exist)

Question: what do non-injective transformations c ll T2l ' e ' 7
: ) —— - p(X;Y) =1 +%
do to the mutual information? 26r PXiY) =3 092( ) ’
g [ — X2
» Example: start from last slide: 54t _
X ~N(0,02); Y|X ~N(X,02). £
. S 2t 1
» Then, consider Z := Y2 2
larger than, €0 . ]

> Is Ip(X; 2) {sma//er than,} Ip(X;Y)? 107 10t 10°
or equal to
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L9 8) o
Data Processing Inequality Il: Formalization ., . "N ?
Loy, (845]) ~
Consider a Markov chain: X — Y — Z, ie,, P(X,Y,Z) = P(X) P(Y|X) P(Z]Y).
< X and Z are conditionally independent given Y (i.e., P(X,Z|Y) = P(X|Y)P(Z]Y)).

& Z — Y — Xis a Markov chain (i.e., P(X.Y.Z) = P(Z)P(Y|Z) P(X]Y)).

Theorem (data processing inequality): “once we've removed some information from a
random variable, further processing cannot restore the removed information.”

> ‘IP(X; Y)>Ip(X;Z) and Ip(Y;Z) > Ip(X; Z)’ (V Markov chains W‘(;%Y)Y — 7).
MDA ‘Propar Pk 2)
P f: A= - - L
rook L) - L (x,2)= &, ) 4, b e Pm)] Ef’[ e PO, P00 R
P(xz) Pkz)
/A 1&72< Pz1y) P(x) ) Z’/l (Z—W(WX)W ) Q’? (=0

Yersen ﬂw[c
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Inf.-Theoretical Bounds on Model Performance R
Consider a classification task: assign label Y to input data X: learn P(Y | X)

» Data generative distribution: P(X, Yg1) = P(Yee) P(X| Y1)

ifi nayeinall essible wiot Ja R
—> Markov chain: [Yg.t_ data gen. x _Classifier Y] P ,,();[, bl ot ief
> Perfect classification would mean Y = Y;; = Ip(Y;Y) = Hp(Yer) — Hp(Ygr | Y)

=0
> More generally: high accuracy == high Ip(Yge; Y) = high Ip(Yg; X) > Ip(Yge; Y):
Bound: accuracy < £~ (Ip(Yg1; X)) where f(a) = Hp(Yge) + alogy a + (1 — ) log, o2

[Meyen, 2016 (MSc thesis advised by U. von Luxburg)]

. . X data gen. preprocessing classifier
» Now introduce a preprocessing step: ‘ Y+ X 4 Y

> Theoretical bound now: accuracy < £~ (Ip(Ygr: Z)) < F1(Ip(Yge: X))
(by information processing inequality and monotonicity of f).
= Information theory suggests: preprocessing can only hurt (bound on) downstream performance.
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EBERHARD KARLS
UNIVERSITAT %

Limitations of Information Theory TUMNGEN

[Tim Xiao, RB, ICLR 2023]

1.0 » Observation: classification accuracy decreases for
very large rate (= bound on mutual information).
>
O - - . . y .
u 0.8 » Explanation: information theory doesn't consider
8 (computational /modeling) complexit:
< 06 p g piexity.
g ’ » Forcing the encoder to throw away some of the
2 (least relevant) information can make downstream
8.2 0.4 1 tasks easier in practice.
» Note: it's the information bottleneck that can make
0.2 A downstream processing easier, not any (possible)
T T T T dimensionality reduction.
0 25 50 75 o
Total Rate (In fact, many downstream tasks become easier in
higher dimensions — kernel trick.)
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H UNIVERSITAT
Be Creative! You Now Have the Tools for It. o &
representations of all pieces of teaching content We want to quantify:
(“knowledge components”
» How specific are learner
. representations s for their learner (7
lerners ’
mastery o . —
Ils: ) = He(0) ~ He(¢ )
components . .
» How consistent are representations
@ for a fixed learner if we train on
~ different subsets of time steps?
5}
c L.
5 @ Er., [ 1P(s"; Leub) |

» Disentanglement, i.e., how
informative is each component
time of s € R" about learner identity ¢?

[Hangi Zhou, RB, CM Wau, A Tejero-Cantero, ICLR 2024] H,D(S) o H,D(S | g)

Y

diag
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