

Information Theory With Applications to Data Compression

Robert Bamler · Tutorial at IMPRS-IS Boot Camp 2024

While you're waiting:

If you brought a laptop (optional), please go to https://bamler-lab.github.io/bootcamp24 and test if you can run the linked Google Colab notebook. You can also find the slides at this link.

Let's Debate

Slides and code available at: https://bamler-lab.github.io/bootcamp24

UNIVERSITAT

1. Which of the following two messages contains more information?

- (a) "The instructor of this tutorial knows how to solve a quadratic equation." √ longer; X not much new information (little *surprise*); \checkmark useful to judge my qualification.
- (b) "The instructor of this tutorial likes roller coasters." $\sqrt{ }$ new information; $\bm{\times}$ do you really care?

2. Which of the following two pairs of quantities are more strongly correlated:

- (a) the volumes and radii of (spherical) glass marbles (of random sizes and colors)
	- ✓ exact correspondence: $V = \frac{4}{3}\pi r^3$, so once we know r, telling us V gives us no new information. X nonlinear relation \implies lower Pearson's correlation coefficient (see code).
- (b) the volumes and masses of glass marbles (of random sizes and colors)
	- \checkmark linear relation: $m = \rho V$, so m and V essentially convey the same information in different units; X not an exact correspondence: density ρ varies slightly depending on color;

 \implies even if we know V, we can still learn some new information by measuring m and vice versa.

.
... IMPREJE R. . . C. ... 2024 - Illia, and and analyzisk as your *Thanks Alemany* and Society

So, What is Information Theory?

Information theory provides tools to analyze:

- \triangleright the quantity (i.e., amount) of information in some data;
- more precisely, the amount of *novelty/surprisingness* of a piece of information w.r.t.:
	- (a) prior beliefs (e.g., an ML researcher probably knows high-school math); or
	- (b) a different piece of information (when quantifying correlations).

Information theory is oblivious to:

- \triangleright the quality of a piece of information (e.g., its utility, urgency, or even truthfulness).
- \triangleright how a piece of information is represented in the data, e.g.,
	- the volume and radius of a sphere are different representations of the same piece information;
- ▶ for a given neural network with known weights, its output cannot contain more information than its input. \Rightarrow laf. theory can provide upper bounds, its surplu cannot contain these institutions its
install \Rightarrow laf. theory can provide upper bounds, e.g., on how much useful information an optimal
- easier but often *harder to process* than their uncompressed counterparts.

ion • IMPRS-IS Boot Camp 2024 • slides and code available at https

Quantifying Information

UNIVERSITAT
TUBINGEN Ť

 $\overline{14}$

[Shannon, A Mathematical Theory of Communication, 1948]

Def. "information content of a message":

The minimum number of bits that you would have to transmit over a noise-free channel in order to communicate the message, assuming an optimal encoder and decoder.

- Mhat does "optimal" mean?
- You don't actually have to construct an optimal encoder & decoder to calculate this number.

- ▶ S may have a different length $|S|$ for different messages: $S \in \{0,1\}^* := \bigcup \{0,1\}^n$;
	- But: the encoder must not encode any information in the *length* of **S** alone (see next slide)
- ▶ Before the sender sees the message, sender and receiver can communicate arbitrarily much for free in order to agree on a code C : message space $\mathcal{X} \longrightarrow \{0,1\}^*$.
- ▶ Goal: find a valid code C that minimizes the expected bit rate $\mathbb{E}_{P_{\text{data source}}(X)}||C(X)||$.

What's a "Valid Code"? (Unique Decodability)

Recall:

- The bit string $S = C(X) \in \{0,1\}^*$ can have different lengths for different messages X.
- riangleright We want to interpret its length $|S|$ as the *amount of information* in the message X.
	- \blacktriangleright Seems to make sense: if the sender sends, e.g., a bit string of length 3 to the receiver, then they can't communicate more than 3 bits of information ...
	- ... unless the fact that $|S| = 3$ already communicates some information. We want to forbid this.
- \triangleright Add additional requirement: C must be uniquely decodable:
	- Sender may concatenate the encodings of several messages: $\mathbf{S} := C(X_1) \parallel C(X_2) \parallel C(X_3) \parallel \ldots$
	- ▶ Upon receiving S, the receiver must still be able to detect where each part ends.

Source Coding Theorem

UNIVERSITAT
TUBINGEN

it allows us te

Theorem (Shannon, 1949): Consider a data source $P(X)$ over a discrete message space X.

- \triangleright The bad news: in expectation, lossless compression can't beat the entropy:
	- \forall uniquely decodable codes $C: \mathbb{E}_P[|C(X)|] \geq \mathbb{E}_P[-\log_2 P(X)] =: H_P(X)$.
- The good news: but one can get quite close (and not just in expectation): Useful because

 \exists uniquely decodable code C:

$$
\forall \text{ messages } x \in \mathcal{X}: \quad |C(x)| < -\log_2 P(X = x) + 1. \\
 \quad (\implies \mathbb{E}_P[|C(X)|] < H_P(X) + 1)
$$

Also, we can keep the total overhead < 1 bit even when encoding several messages

 $-\log_2 P(X=x)$ is the contribution of message x to the bit rate of an optimal code when we amortize over many messages. It is called "information content of x ".

Preparations for Proof of KM Theorem

Definition: For a code $C : \mathcal{X} \rightarrow \{0, 1\}^*$, define $C^*: \mathcal{X}^* \to \{0,1\}^*, \quad C^*\big((x_1,x_2,\ldots,x_k)\big) := C(x_1) \parallel C(x_2) \parallel \ldots \parallel C(x_k).$

(Thus: C is uniquely decodable $\iff C^*$ is injective)

Lemma: C be a uniquely decodable code over \mathcal{X} ; $\left\{\n\begin{array}{l}\n n \in \mathbb{N}_0; \\
 Y_n := \{ \mathbf{x} \in \mathcal{X}^* \text{ with } |C^*(\mathbf{x})| = n \}.\n\end{array}\n\right.$ \blacktriangleright let: then: $|Y_n| < 2^n$. **Proof:** C^* is injective $\Rightarrow |Y_n| = |C^*(Y_n)|$
 $C^*(Y_n) \subseteq \{0, 1\}^n$ $\Rightarrow |C^*(Y_n)| \leq |\{0, 1\}^n| = 2^n$ $\Rightarrow |Y_n| \leq 2^n$ \Box

Proof of Part (a) of KM Theorem

Lemma (reminder): $|Y_n| \le 2^n$ where $Y_n := \{ \mathbf{x} \in \mathcal{X}^* \text{ with } |C^*(\mathbf{x})| = n \}$, C uniq. dec. the contract of the contract of $\sum_{x} 2^{-|C(x)|} \ge 1$

Claim (remember): C is uniquely decodable
$$
\Rightarrow \sum_{x \in \mathcal{X}} 2^{-|C(x)|} \leq 1.
$$

\nLet $k \in \mathbb{N}$,

\n
$$
r^k = \left(\sum_{x_1 \in \mathcal{X}} 2^{-|C(x_1)|} \right) \left(\sum_{x_2 \in \mathcal{X}} 2^{-|C(x_2)|} \right) \cdots \left(\sum_{x_k \in \mathcal{X}} 2^{-|C(x_k)|} \right) = \sum_{x \in \mathcal{X}} 2^{-\frac{1}{|C(x_1)|}}
$$
\n(i) if \mathcal{X} is finite:

\n
$$
\text{Let } \gamma := \max_{x \in \mathcal{X}} |C(x)| < \infty \Rightarrow \forall x \in \mathcal{X}^k : |C^*(x)| \leq k \quad \Rightarrow \quad \chi^k \leq \bigcup_{n=0}^{k} \gamma_n
$$
\n
$$
\Rightarrow r^k \leq \sum_{n=0}^{k} \sum_{x \in \mathcal{X}_n} 2^{-\frac{|C^*(x)|}{2n}} = \sum_{n=0}^{k} \frac{|Y_n|}{\sum_{n=0}^{k} 2^{-n}} \leq k \quad \Rightarrow \quad \forall k \in \mathbb{N} : \sum_{n=0}^{k} \leq \gamma + \frac{1}{k}
$$
\n(ii) if \mathcal{X} is countably infinite: $\frac{d(l + \epsilon_{\nu \to \tau}) \geq 0}{\sum_{x \in \mathcal{X}} 2^{-|C(x)|} \sum_{x \in \mathcal{X}} 2^{-|C(x)|} \leq \lim_{N \to \infty} \sum_{x \in \mathcal{X}} 2^{-|C(x)|} \leq 1$

\n
$$
\text{where } \gamma = 0 \quad \text{where }
$$

UNIVERSITAT

 $\frac{}{\sqrt{13}}$

Proof of Source Coding Theorem

- Solution of the relaxed optimization problem: $\ell(x) = -\log_2 P(X=x) \in \mathbb{R}_{\geq 0}$.
- Example 1 Let's now constrain $\ell(x)$ again to integer values $\forall x \in \mathcal{X}$. \implies lower bound on expected bit rate ("the bad news"):

 $\mathbb{E}_{P} [|C(X)|] \geq \underbrace{\mathbb{E}_{P} [-\log_2 P(X=x)]}_{\text{tr}(X)}$

 \forall uniquely decodable C.

- ▶ Upper bound on the *optimal* expected bit rate ("the good news"):
	- Shannon Code: set $\ell(x) := \lceil -\log_2 P(X=x) \rceil \in \mathbb{N}$.
	- Satisfies Kraft inequality: $\sum_{x \in \mathcal{X}} 2^{-\lceil -\log_2 P(X=x) \rceil} \le \sum_{x \in \mathcal{X}} 2^{\log_2 P(X=x)} = 1$. $\implies \exists$ uniquely decodable code C_{ℓ} with:

$$
|\mathcal{C}_{\ell}(x)| = \ell(x) < -\log_2 P(X=x) + 1 \qquad \forall x \in \mathcal{X}.
$$

UNIVERSITAT

Quantifying Uncertainty in Bits (for Discrete Data) UNIVERSITAT

- **Information content:** $-\log_2 P(X=x)$: The (amortized) bit rate for encoding the given message x with a code that is optimal (in expectation) for the data source P .
- **Entropy:** $H_P(X) = \mathbb{E}_P[-\log_2 P(X)] \equiv H[P(X)] \equiv H[P]$: The expected bit rate for encoding a (random) message from data source P with a code that is optimal for P . = How many bits does receiver need (in expectation) to reconstruct X ? = How many bits does receiver need (in expectation) to resolve any *uncertainty* about X ?
- ► Cross entropy: $H[P,Q] = \mathbb{E}_P[-\log_2 Q(X)] \geq H[P]$: The expected bit rate when encoding a message from data source P with a code that is optimal for a model Q of the data source $(\implies$ practically achievable expected bit rate). \rightarrow We'd want to minimize this over the model $Q_{\cdot} \rightarrow$ Maximum likelihood estimation.
- ► Kullback-Leibler divergence: $D_{KL}(P||Q) = H[P,Q] H[P] = \mathbb{E}_P|-log_2 \frac{Q(X)}{P(X)}$ > 0 : Overhead (in expected bit rate) due to a mismatch between the true data source \overline{P} and
its model Q (also called "relative entropy"). $\frac{P_{KL}}{P_{KL}}$ or the solution of $\frac{P_{KL}}{N}$ where $P(X=y_0) = 0$ but $Q(X=y_0) = 0$.

sion - IMPRS-IS Boot Camp 2024 - slides and code available at https://b

Example 1: Text Compression With GPT-2

Autoregressive language model:

- Message **x** is a sequence of tokens: $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
- $\triangleright P(\mathbf{X}) = P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) P(X_4 | X_1, X_2, X_3) \dots P(X_n | X_1, X_2, \dots X_{n-1}).$

We take expectation over our <u>model</u> P has rather then over the

two (cultural) data gen, process, so there's an additional overland of

th

Compression strategy:

- 1. Encode x_1 with an optimal code for $P(X_1)$. \rightarrow $\mathbb{E}[\mathbb{E}[\# \text{bits}]$ $<$ $H[P(X_1)]$ + 1
- 2. Encode x_2 with an optimal code for $P(X_2|X_1=x_1) \to \mathbb{E}_{P}[\# \text{bits}] < H\big[P(X_2|X_1=x_1)\big]+1$
- (docada opantes in seme order as encoder) 3. And so forth ...

https://bamler-lab.github.io/bootcamp24 \rightarrow Colab notebook **Technicalities:**

- b Up to 1 bit of overhead per token? \rightarrow Use a stream code: amortizes over tokens.
- The model expects that $x_1 = \langle beginning \space of \space sequence \rangle$. \rightarrow Redundant, don't encode.
- How does the *decoder* know when to stop? \rightarrow Use an \langle *end of sequence* \rangle token.

Applications to Data Compression - IMPRS-IS Boot Camp 2024 - slides and code available at https://ba

Takeaways From Our Code Example

UNIVERSITAT
TUBINGEN T

 $\frac{1}{21}$

 $\overline{122}$

- Near-optimal compression performance is achievable in practice.
	- Information content accurately estimates #bits needed in practice (even if it's fractional).
- Data compression is intimately tied to probabilistic generative modeling.
	- \blacktriangleright "Don't transmit what you can predict." \implies generative modeling
	- But still allow communicating things we wouldn't have predicted. \implies probabilistic modeling \blacktriangleright
- **Decoding** \approx **generation** (= sampling from a probabilistic generative model P):
	- \triangleright To sample a token x_i , one injects randomness into $P(X_i | X_{1:i-1} = x_{1:i-1})$.
	- To decode a token x_i , one injects compressed bits into (a code for) $P(X_i | X_{1:i-1} = x_{1:i-1})$.
	- Decoding from a random bit string would be exactly equivalent to sampling from P.
- ▶ Data compression is highly sensitive to tiny model changes (e.g., inconsistent rounding).
	- ▶ Compression codes C are "very non-continuous" (because they remove redundancies by design).
	- True data compression usually makes it harder to process information.

opion , IMPRSJS Root Camp 2024 , clides and code available at https://hem1er=1eh.withuh.io/h

- **Method:** quantize network weights (\approx round to a discrete grid), then compress losslessly.
- **Observation:** information content remains meaningful even in the regime $\ll 1$ bit.

Joint, Marginal, and Conditional Entropy

Consider a data source $P(X, Y)$ that generates pairs $(x, y) \sim P$:

$$
P(X, Y) = P(X) P(Y | X) = P(Y) P(X | Y).
$$

 \triangleright Joint information content, i.e., information content of the entire message (x, y) : $-\log_2 P(X=x, Y=y) = -\log_2 P(X=x) - \log_2 P(Y=y | X=x).$

► Joint entropy:
\n
$$
H_P((X, Y)) = \mathbb{E}_{P(X,Y)}[-\log_2 P(X, Y)] = \mathbb{E}_{P(X)P(Y|X)}[-\log_2 P(X) - \log_2 P(Y|X)]
$$
\n
$$
= \underbrace{\mathbb{E}_{P(X)}[-\log_2 P(X)]}_{(\text{marginal}) \text{ entropy } H_P(X)} + \underbrace{\mathbb{E}_{X \sim P(X)}[\underbrace{\mathbb{E}_{P(Y|X=x)}[-\log_2 P(Y|X=x)]}_{=: H_P(Y|X=x) = \text{entropy of the conditional distribution } P(Y|X=x)]}_{=:\text{ conditional entropy } H_P(Y|X) = H_P(Y) + H_P(X|Y)}
$$
\n
$$
\triangleright \boxed{H_P((X, Y)) = H_P(X) + H_P(Y|X) = H_P(Y) + H_P(X|Y)}
$$

Mutual Information

Reminder:
$$
H_P(Y | X) := \mathbb{E}_P[-\log_2 P(Y | X)] = \mathbb{E}_{x \sim P(X)}[\underbrace{\mathbb{E}_{P(Y | X=x)}[-\log_2 P(Y | X=x)]}_{= H_P(Y | X=x)}];
$$

\n $H_P((X, Y)) = H_P(X) + H_P(Y | X).$

Let's encode a given message (x, y) :

- (a) encode x with optimal code for $P(X)$; then enocde y with optimal code for $P(Y | X = x)$;
- (b) encode (x, y) using an optimal code for the data source $P(X, Y)$;
- (c) encode x with optimal code for $P(X | Y = y)$; then enocde y with optimal code for $P(Y)$.
- (d) encode x with optimal code for $P(X)$; then enocde y with optimal code for $P(Y)$;

UNIVERSITAT
TUBINGEN

UNIVERSITAT

 $\overline{125}$

SP

Interpretations of the Mutual Information $I_P(X; Y)$ UNIVERSITAT
TUBINGEN

The following expressions for $I_P(X; Y)$ are equivalent:

① $I_P(X; Y) = H_P(X) + H_P(Y) - H_P((X, Y))$ $= D_{\text{KL}}(P(X, Y) || P(X) P(Y)) \ge 0$

Interpretation: how much would ignoring correlations between X, Y hurt expected compression performance?

- Interpretation: how many bits of information does knowledge of X tell us about Y (in expectation)? (reduction of uncertainty, "expected information gain")
- $\textcircled{3}$ $I_P(X; Y) = H_P(X) H_P(X | Y)$ **Interpretation:** how many bits of information does knowledge of Y tell us about X (in expectation)?

Note: "in expectation" is an important qualifier here. Conditioning on a specific x can *increase* the entropy of Y: $H_P(Y|X) \leq H_P(Y)$ (always), but: $H_P(Y | X = x) > H_P(Y)$ is possible for some (atypical) x .

UNIVERSITAT

UNIVERSITAT

Continuous Data (Pedestrian Approach)

Recall: optimal lossless code C_{opt} for a data source $P: |H_P(X) \leq \mathbb{E}_P[|C_{\text{opt}}(X)|] < H_P(X) + 1$

Lossless compression is only possible on a discrete (i.e., countable) message space X. (Because $X \xrightarrow{\text{lossless code } C \text{ (injective)}} \{0,1\}^* \xrightarrow{\text{ injective}} \mathbb{N}.\}$

Simple lossy compression of a message $X \in \mathbb{R}^n$: (an "act of desperation" - M.P.)

- Require that reconstruction X' satisfies $|X'_i X_i| < \frac{\delta}{2}$ $\forall i \in \{1, ..., n\}$ for some $\delta > 0$.
- ► Let $\hat{X} := \delta \times \text{round}(\frac{1}{2}X)$. $\implies |\hat{X}_i X_i| \leq \frac{\delta}{2}$ $\forall i$.
- Compress $\hat{X} \in \delta \mathbb{Z}^n$ losslessly using induced model $P(\hat{X})$. \implies Reconstruction $X' = \hat{X}$.
- $\blacktriangleright \hspace{0.2cm} P(\hat{X} = \hat{x}) = P\Big(X \in \bigtimes\limits_{i=1}^{n}\big[\hat{x}_i \frac{\delta}{2}, \hat{x}_i + \frac{\delta}{2}\big]\Big) = \int_{\times_{i=1}^{n}\big[\hat{x}_i \frac{\delta}{2}, \hat{x}_i + \frac{\delta}{2}\big]} p(x) d^n x \approx \delta^n p(\hat{x}) + o(\delta^n)$ $\begin{array}{lll} \hspace{-3mm} & H_{P}(\hat{X}) \approx -\sum_{\hat{X} \in \tilde{\partial}\mathbb{Z}^{n}} \delta^{n}p(\hat{x})\log_{2}(\delta^{n}p(\hat{x})) & \stackrel{\text{``differential entropy''}\textit{hp}(X)}{\longrightarrow} \sum_{\hat{i} \neq \hat{i} \text{''s.t. } \hat{i} \neq \hat{j}} \sum_{\text{can of the complex numbers } \hat{i} \neq \hat{j} \text{''s.t. } \hat{i} \neq \hat{j}} \ \approx & \frac{\delta^{n} \delta^{n}p(\hat{x})\log_{2}p(x)}{p(\hat{x})\log_{2}p(x)+n\$

How Does Discretization Relate to IMPRS-IS?

Physics in the 19th century:

- **Electrodynamics:** unified theory of electric+magnetic forces (Lorentz, Maxwell, \sim 1860) \longrightarrow understanding of light \longrightarrow radio communication (Marconi, \sim 1895)
- Thermodynamics: temperature, heat, entropy, *steam engine* (Carnot process)

Problem: these two theories are incompatible when trying to explain the spectrum of the sun.

- "Classical" theory: it should radiate ∞ energy ("ultraviolet catastrophe").
	- Electrodynamics: energy E_f of electromagnetic field at frequency f is a continuous quantity $\forall f$.
	- **Thermodynamics:** thus, in thermodynamic equilibrium, $\mathbb{E}[E_f] = \frac{1}{2}k_B T \ \forall f$.
- ▶ Observation: OK for low frequencies ($\exists < \infty$), wrong for high frequencies ($\exists \infty$).
- Max Planck, 1900: discrepancies can be resolved if we assume that $|E_f \in hf \times \forall f|$
	- **Quantum mechanics** becomes relevant on energy scales $E \lesssim hf$, with the Planck constant $h \approx 6.626 \times 10^{-34} \frac{J}{Hz}$; foundation of modern chemistry, semiconductor industry, ...

KL-Divergence Between Continuous Distributions

- UNIVERSITAT
TUBINGEN T
- **Differential entropy** (reminder): $h_P(X) = \mathbb{E}_P[-\log_2 p(X)]$ A Relation to entropy of discretization \hat{X} : $H_P(\hat{X}) \approx h_P(X) + n \log_2(1/\delta) \stackrel{\delta \to 0}{\longrightarrow} \infty$
- **Differential cross entropy** (less common): $h[P(X), Q(X)] = \mathbb{E}_P[-\log_2 q(X)]$ \rightarrow Relation to discretization: $H[P(\hat{X}), Q(\hat{X})] \approx h[P(X), Q(X)] + n \log_2(1/\delta) \xrightarrow{\delta \rightarrow 0} \infty$
- **EXECUTE:** Kullback-Leibler divergence between discretized distributions $P(\hat{X})$ and $Q(\hat{X})$: $D_{\mathsf{KL}}(P(\hat{X}) \|\ Q(\hat{X})) = H[P(\hat{X}), Q(\hat{X})] - H_P(\hat{X})$

$$
\approx h\big[P(X), Q(X)\big] + n\log_2(1/\delta) - \big(h_P(X) + n\log_2(1/\delta)\big)
$$

= $\mathbb{E}_P\left[-\log_2 \frac{q(X)}{p(X)}\right] =: D_{\mathsf{KL}}(P(X) \parallel Q(X)) \stackrel{\text{(possibly)}}{\leq} \infty$

- \implies Interpretation: $D_{\text{KL}}(P \parallel Q)$ = modeling overhead, in the limit of infinitely fine quantization.
	- ▶ Generalization (density-free): $D_{KL}(P \parallel Q) = -\int \log_2 \left(\frac{dQ}{dP}\right) dP$

(Variational) Information Bottleneck UNIVERSITAT Example: β -variational autoencoder (similar for supervised models (Alemi et al., ICLR 2017)) **semantic**
 encoding
 $Q(Z|X)$
 \longrightarrow
 $P(Z)$
 $P(X|Z)$ input data reconstruction (χ) ▶ Loss function: $\mathbb{E}_{x \sim \text{data}} \Big[\mathbb{E}_{Q(Z|X=x)} \big[- \log P(X=x \mid Z) \big] + \beta D_{\text{KL}} \big(Q(Z \mid X=x) \, \big\| \, P(Z) \big) \Big]$ information in $z \sim Q(Z|X=x)$ information in $z \sim Q(Z|X=x)$ $D_{\mathsf{KL}}(\ldots||\ldots) = |\text{ for someone who doesn't know } x$ for someone who knows x (i.e., they know $Q(Z|X=x)$) (i.e., they only know $P(Z)$) \int Capture as much $(x\text{-independent})$ information about z in the prior $P(Z)$ as possible. <code>[Encode</code> as little (unnecessary) information in $\mathcal{Q}(Z\,|\,X\!=\!x)$ as possible.

 $\overline{131}$

Rate/Distortion Trade-off

 \blacktriangleright Tuning β allows us to trade off *bit rate* against *distortion*.

UNIVERSITAT
TÜBINGEN

T

 $\overline{)34}$

BPG 4:4:4 left: 0.143 bit/pixel right: 0.14 bit/pixel

VAE-based left: 0.142 bit/pixel right: 0.13 bit/pixel [Yang, RB, Mandt,
NeurlPS 2020]

JPEG left: 0.142 bit/pixel
right: 0.14 bit/pixel

$$
p(y) = \begin{cases} \alpha & \text{if } y \in [-1, 0); \\ 1 - \alpha & \text{if } y \in [0, 1). \end{cases} \qquad \text{(for } \alpha \in [0, 1])
$$
\n
$$
\Rightarrow h_P(Y) = -\int_{-1}^{1} p(y) \log_2 p(y) \, dy
$$
\n
$$
= -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha) =: H_2(\alpha)
$$
\n
$$
P(Y | X) = \begin{cases} \mathcal{U}([-1, 0)) & \text{if } X < 0; \\ \mathcal{U}([0, 1)) & \text{if } X \ge 0. \end{cases} \qquad \text{(as before)}
$$
\n
$$
\Rightarrow h_P(Y | X) = 0 \quad \text{(as before)}
$$
\n
$$
Mutual information: I_P(X; Y) = h_P(Y) - h_P(Y | X) = H_2(\alpha) - 0 = H_2(\alpha) \le 1 \text{ bit.}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\ \n\text{Matrix} & \text{if } Y \le 0. \n\end{cases}
$$
\n
$$
I = \begin{cases} \n\text{Matrix} & \text{if } Y \le 0; \\
$$

Mutual Information for Continuous Random Vars

UNIVERSITAT
TUBINGEN

Symmary of Example 1

UNIVERSITAT

The mutual information $I_P(X; Y)$ takes into account:

Example 2: Gaussian Signal With Gaussian Noise UNIVERSITAT

Consider an analog signal $x \sim \mathcal{N}(0, \sigma_s^2)$, sent over a noisy channel (e.g., voltage on a wire).

 \implies Receiver receives a somewhat corrupted signal: $y \sim \mathcal{N}(x, \sigma_n^2)$.

Mutual information: $I_P(X;Y) = h_P(Y) - h_P(Y|X)$

$$
p(y) = \mathbb{E}_{P(X)}[p(y|X)] = \int \mathcal{N}(x; 0, \sigma_s^2) \, \mathcal{N}(y; x, \sigma_s^2) \, dx = \mathcal{N}(y; 0, \sigma_s^2 + \sigma_n^2)
$$
\n
$$
\implies I_P(X; Y) = h_P(Y) - h_P(Y|X) = \frac{1}{2} \log_2(\sigma_s^2 + \sigma_n^2) - \frac{1}{2} \log_2(\sigma_n^2) = \frac{1}{2} \log_2 \left(1 + \frac{\sigma_s^2}{\sigma_s^2}\right)
$$

Interpretation: σ_s^2/σ_n^2 is the *signal-to-noise ratio* (SNR).

- For SNR \rightarrow 0, we have $I_P(X;Y) \rightarrow 0$; \Longrightarrow receiver receives no meaningful information.
- But, as long as $SNR > 0$, one can still extract *some* information from the received signal. \blacktriangleright
- In the theory of channel coding (aka error correction), $P(Y|X)$ models a communication channel. Its *channel capacity* $C := \sup_{P(X)} I_P(X; Y)$ is the number of bits that can be transmitted noise-free per invocation of the noisy channel (in the limit of long messages).

Data Processing Inequality I: Intuition

Remember when we were all still young and looking at slide 40?

 $I_P(X;Y) = D_{\mathsf{KL}}(P(X,Y) \, \| \, P(X) \, P(Y)) = \mathbb{E}_P \left[-\log_2 \frac{p(X) \, p(Y)}{p(X,Y)} \right]$ (if densities p exist) Exercise: let $X' = f(X)$, $Y' = g(Y)$, where f and g are differentiable *injective* functions. Convince yourself that I_P is independent of representation, i.e., $I_P(X; Y') = I_P(X; Y)$.

Data Processing Inequality II: Formalization $_{f_nL^2A_nD}$

Consider a Markov chain: $X \longrightarrow Y \longrightarrow Z$, i.e., $P(X, Y, Z) = P(X) P(Y|X) P(Z|Y)$.

- \Leftrightarrow X and Z are conditionally independent given Y (i.e., $P(X, Z | Y) = P(X | Y) P(Z | Y)$).
- $\Leftrightarrow Z \longrightarrow Y \longrightarrow X$ is a Markov chain (i.e., $P(X, Y, Z) = P(Z) P(Y|Z) P(X|Y)$).

Theorem (data processing inequality): "once we've removed some information from a random variable, further processing cannot restore the removed information."

$I_P(X; Y) \geq I_P(X; Z)$ and $I_P(Y; Z) \geq I_P(X; Z)$	$(\forall$ Markov chains $\Re(2\#Y \rightarrow Z)$.
Proof:	$\Gamma_p(Y; Z) - \Gamma_p(X; Z) = \mathbb{E}_p \int -\mathcal{L}_{\sigma Z} \frac{P(Y) P(Z)}{P(Y, Z)} + \mathcal{L}_{\sigma Z} \frac{P(X) P(Z)}{P(X, Z)}\right] = \mathbb{E}_p \left[-\mathcal{L}_{\sigma Z} \frac{P(Y) P(Z)}{P(Y, Z)}\right]$
\Rightarrow $\frac{P(X) P(Z)}{P(Y, Z)P(X)P(Z)}\right]$	
\Rightarrow $\frac{P(X, Z)}{P(Y, Z)} = \mathbb{E}_p \left[\frac{P(X, Z)}{P(Y, Z)}\right] = \mathbb{E}_p \left[\frac{P(X, Z)}{P(Y, Z)}\right] = \mathbb{E}_p \left[\frac{P(X, Z)}{P(Y, Z)}\right] = -\mathcal{L}_{\sigma Z} (1) = O$ \n	
$\frac{\partial e_1 \cdot e_2}{\partial x_1 \cdot e_1} = \frac{\partial e_2 \cdot e_1}{\partial x_1 \cdot e_1} = \frac{\partial e_1 \cdot e_2}{\partial x_1 \cdot e_1} = \frac{\partial e_2 \cdot e_1}{\partial x_1 \cdot e_1} = \frac{\partial e_1 \cdot e_2}{\partial x_1 \cdot e_$	

Inf.-Theoretical Bounds on Model Performance

Consider a classification task: assign label Y to input data X: learn $P(Y|X)$

- ▶ Data generative distribution: $P(X, Y_{g,t}) = P(Y_{g,t}) P(X | Y_{g,t})$
	- maximally possible mut. inf A Markov chain: $\boxed{Y_{\text{g.t.}} \xrightarrow{\text{data gen.}} X \xrightarrow{\text{classification}} Y}$
		- Perfect classification would mean $Y = Y_{g.t.} \implies I_P(Y_{g.t.}; Y) = \underbrace{H_P(Y_{g.t.})} \underbrace{H_P(Y_{g.t.} | Y)}$
		- More generally: high accuracy \implies high $I_P(Y_{g.t.}; Y) \implies$ high $I_P(Y_{g.t.}; X) \geq I_P(Y_{g.t.}; Y)$: \blacktriangleright **Bound:** accuracy $\leq f^{-1} (I_P(Y_{g,t}; X))$ where $f(\alpha) = H_P(Y_{g,t.}) + \alpha \log_2 \alpha + (1 - \alpha) \log_2 \frac{1 - \alpha}{\#\text{classes} - 1}$
[Meyen, 2016 (MSc thesis advised by U. von Luxburg)]
- ▶ Now introduce a preprocessing step: $\big| Y_{\sigma t} \xrightarrow{\text{data gen.}} X \xrightarrow{\text{preprocessing}} Z \xrightarrow{\text{classification}} Y$
	- Theoretical bound now: accuracy $\leq f^{-1}(I_P(Y_{g,t.};Z)) \leq f^{-1}(I_P(Y_{g,t.};X))$ (by information processing inequality and monotonicity of f).
	- Information theory suggests: preprocessing can only hurt (bound on) downstream performance. .
ation Theory With Applications to Data Compression • IMPRS-IS Boot Camp 2024 • slides and code available at https://bam1er-1ab.eithub.io/b

Limitations of Information Theory

• Observation: classification accuracy decreases for **very large rate** $(=$ bound on mutual information).

UNIVERSITAT
TÜBINGEN

UNIVERSITAT
TUBINGEN

UNIVERSITAT
TUBINGEN

T

- \blacktriangleright Explanation: information theory doesn't consider (computational/modeling) complexity.
	- Forcing the encoder to throw away some of the \blacktriangleright . (least relevant) information can make downstream tasks easier in practice.
	- Note: it's the information bottleneck that can make downstream processing easier, not any (possible) dimensionality reduction.

Be Creative! You Now Have the Tools for It.

We want to quantify:

How specific are learner representations s for their learner ℓ ?

$$
I_P(s;\ell) = H_P(\ell) - H_P(\ell \,|\, s)
$$

How **consistent** are representations for a fixed learner if we train on different subsets of time steps?

$$
\mathbb{E}_{\ell_{\sf sub}}\big[\textit{I}_{\mathsf{P}}({\sf s}^{\ell};\ell_{\sf sub})\big]
$$

Disentanglement i.e., how informative is each component of $s \in \mathbb{R}^n$ about learner identity ℓ ?

[Hangi Zhou, RB, CM Wu, Á Tejero-Cantero, ICLR 2024] $H_P(s) - H_P(s | \ell)_{\text{diag}}$

⁽In fact, many downstream tasks become easier in higher dimensions \rightarrow kernel trick.)