
Information Theory With Applications to
Data Compression

Robert Bamler · Tutorial at IMPRS-IS Boot Camp 2024

While you’re waiting:
If you brought a laptop (optional), please go to
https://bamler-lab.github.io/bootcamp24
and test if you can run the linked Google Colab
notebook. You can also find the slides at this link.

Faculty of Science · Department of Computer Science · Group of Prof. Robert Bamler

Let’s Debate
1. Which of the following two messages contains more information?

(a) “The instructor of this tutorial knows how to solve a quadratic equation.”
✓ longer; ✗ not much new information (little surprise); ✓ useful to judge my qualification.

(b) “The instructor of this tutorial likes roller coasters.”
✓ new information; ✗ do you really care?

2. Which of the following two pairs of quantities are more strongly correlated:
(a) the volumes and radii of (spherical) glass marbles (of random sizes and colors)

✓ exact correspondence: V = 4
3πr 3, so once we know r , telling us V gives us no new information.

✗ nonlinear relation =⇒ lower Pearson’s correlation coefficient (see code).

(b) the volumes and masses of glass marbles (of random sizes and colors)
✓ linear relation: m = ρV , so m and V essentially convey the same information in different units;
✗ not an exact correspondence: density ρ varies slightly depending on color;

=⇒ even if we know V , we can still learn some new information by measuring m and vice versa.
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Slides and code available at:
https://bamler-lab.github.io/bootcamp24

So, What is Information Theory?
Information theory provides tools to analyze:
� the quantity (i.e., amount) of information in some data;
� more precisely, the amount of novelty/surprisingness of a piece of information w.r.t.:

(a) prior beliefs (e.g., an ML researcher probably knows high-school math); or
(b) a different piece of information (when quantifying correlations).

Information theory is oblivious to:
� the quality of a piece of information (e.g., its utility, urgency, or even truthfulness).
� how a piece of information is represented in the data, e.g.,

� the volume and radius of a sphere are different representations of the same piece information;
� for a given neural network with known weights, its output cannot contain more information than

its input.
� computational costs: compressed representations of the same information are sometimes

easier but often harder to process than their uncompressed counterparts. �
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Where Are These Tools Useful?
Theoretical bounds for

model performance

[Tim Xiao, RB, ICLR 2023]

Analyze abstract
representation vectors

[Hanqi Zhou, RB, C. M.
Wu, Á. Tejero-Cantero,

ICLR 2024]

Data Compression
(“Source Coding”)
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without
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quantize
with
bit rate
penalty

[Alexander Conzelmann, RB;
coming soon]
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My Promise for This Tutorial
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Quantifying Information

[Shannon, A Mathematical Theory of Communication, 1948]

Def. “information content of a message”:
The minimum number of bits that you
would have to transmit over a noise-free
channel in order to communicate the
message, assuming an optimal encoder
and decoder.
� What does “optimal” mean?
� You don’t actually have to

construct an optimal encoder &
decoder to calculate this number.
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Agenda

1
Theory of

Communication

←−−−−−−−−−−−→
2

Applications to
Machine Learning

Derive & interpret:
� information content
� (conditional) entropy
� KL divergence
� mutual information
� data processing ineq.

Brief code example of
data compression with
a deep-learning model

(GPT-2).

When are
information-
theoretical

metrics useful?

Limitations of
information
theory, and

common pitfalls.
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Data Compression: Precise Problem Setup
sender receiver� �� � � �� �

data
source −→ message X −→ encoder

C −→ bit string S −→ decoder
C−1 −→ reconstructed

message X �

Assumptions:
� the bit string S is sent over a noise free channel (we won’t cover channel coding);
� lossless compression: we require that X � = X ;
� S may have a different length |S| for different messages: S ∈ {0, 1}∗ :=

∞�

n=0
{0, 1}n;

� But: the encoder must not encode any information in the length of S alone (see next slide).
� Before the sender sees the message, sender and receiver can communicate arbitrarily

much for free in order to agree on a code C : message space X −→ {0, 1}∗.
� Goal: find a valid code C that minimizes the expected bit rate EPdata source(X )

�
|C(X )|

�
.
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What’s a “Valid Code”? (Unique Decodability)
sender receiver� �� � � �� �

data
source −→ message X −→ encoder

C −→ bit string S −→ decoder
C−1 −→ reconstructed

message X �

Recall:
� The bit string S = C(X ) ∈ {0, 1}∗ can have different lengths for different messages X .
� We want to interpret its length |S| as the amount of information in the message X .

� Seems to make sense: if the sender sends, e.g., a bit string of length 3 to the receiver, then they
can’t communicate more than 3 bits of information ...

� ... unless the fact that |S| = 3 already communicates some information. We want to forbid this.

� Add additional requirement: C must be uniquely decodable:
� Sender may concatenate the encodings of several messages: S := C(X1) � C(X2) � C(X3) � . . .

� Upon receiving S, the receiver must still be able to detect where each part ends.
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Source Coding Theorem
Theorem (Shannon, 1949): Consider a data source P(X ) over a discrete message space X .
� The bad news: in expectation, lossless compression can’t beat the entropy:

∀ uniquely decodable codes C : EP
�
|C(X )|

�
≥ EP

�
− log2 P(X )

�
=: HP(X ).

� The good news: but one can get quite close (and not just in expectation):

∃ uniquely decodable code C :
∀ messages x ∈ X : |C(x)| < − log2 P(X =x) + 1.

(=⇒ EP
�
|C(X )|

�
< HP(X ) + 1)

� Also, we can keep the total overhead < 1 bit even when encoding several messages.

=⇒ − log2 P(X =x) is the contribution of message x to the bit rate of an optimal code
when we amortize over many messages. It is called “information content of x”.
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The Kraft-McMillan Theorem [Kraft, 1949; McMillan, 1956]

(a) ∀ uniquely decodable codes C : X → {0, 1}∗ over some message space X :
�

x∈X
2−|C(x)| ≤ 1 (“Kraft inequality”).

Interpretation: we have a finite budget of “shortness” for bit strings:
� Interpret 2−|C(x)| as the “shortness” of bit string C(x).
� The sum of all “shortnesses” must not exceed 1.

=⇒ If we shorten one bit string then we may have to make another
bit string longer so that we don’t exceed our “shortness budget”.

(b) ∀ functions � : X → N that satisfy the Kraft inequality (i.e.,
�
x∈X

2−�(x) ≤ 1):
∃ uniquely decodable code C� with |C�(x)| = �(x) ∀x ∈X .

Why is this theorem useful? =⇒ min EP [bit rate] = min
C : uniq.

decodable

EP
�
|C(X )|

�
= min
C : satisfies
Kraft ineq.

EP
�
|C(X )|

�
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Preparations for Proof of KM Theorem
Definition: For a code C : X → {0, 1}∗, define

C∗ : X ∗ → {0, 1}∗, C∗�(x1, x2, . . . , xk)
�

:= C(x1) � C(x2) � . . . � C(xk).
(Thus: C is uniquely decodable ⇐⇒ C ∗ is injective)

Lemma:

� let:





C be a uniquely decodable code over X ;
n ∈ N0;
Yn :=

�
x ∈ X ∗ with |C ∗(x)| = n

�
.

� then: |Yn| ≤ 2n.

Proof:
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Proof of Part (a) of KM Theorem
Lemma (reminder): |Yn| ≤ 2n where Yn :=

�
x ∈ X ∗ with |C ∗(x)| = n

�
, C uniq. dec.

Claim (reminder): C is uniquely decodable =⇒ �
x∈X

2−|C(x)| ≤ 1.

(i) if X is finite:

(ii) if X is countably infinite:
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Proof of Part (b) of KM Theorem
Claim (reminder):

�

x∈X
2−�(x) ≤ 1 =⇒ ∃ uniq. dec. code C� with |C�(x)| = �(x) ∀x ∈X .

Algorithm 1: Construction of C�.
Initialize ξ ← 1;
for x ∈ X in order of nonincreasing �(x) do

Update ξ ← ξ − 2−�(x);
Write ξ ∈ [0, 1) in binary: ξ = (0.??? . . .)2;
Set C�(x) to the first �(x) bits after the “0.”

(pad with trailing zeros if necessary);

Claim: the resulting code C� is uniquely decodable.
� We even show: C� is prefix free: ∀x ∈X : C�(x) is not the beginning of any C�(x �), x � �=x .
� Formalization of this proof: see solutions to Problem 2.1 on this problem set:

https://robamler.github.io/teaching/compress23/problem-set-02-solutions.zip
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Sort by decreasing �(x),−−−−−−−−−−−−−→
then cascade from top.



Example: Sum of Two Fair 3-Sided Dice
x possible throws P(X =x) �(x) C�(x)

2 1/9 3
3 , 2/9 2
4 , , 1/3 2
5 , 2/9 2
6 1/9 3

� Check if � satisfies Kraft inequality:
�
x∈X

2−�(x) =

� Question: how should we choose � : X → N for a given model P of the data source?
� typical goal: minimize the expected bit rate EP [�(X )] (with the constraint

�
x∈X 2−�(x) ≤ 1).

� optimally: by Huffman coding (comp. cost ∝ |X | log |X |, i.e., exponential in message length).
� near optimally: via information content; → bounds on optimal EP [�(X )] (next slide).
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Optimal Choice of Target Length � : X → N

� Constrained optimization problem:
� Minimize EP [�(X )] =

�
x∈X

P(X =x) �(x) over �

� with the constraints: (i)
�
x∈X

2−�(x) ≤ 1

(ii) �(x) ∈ N ∀x ∈X

� Idea: relax constraint: (ii’) �(x) ∈ R>0 ∀x ∈X
⇒ Minimization runs over more functions �.
⇒ lower bound: inf

(i),(ii’)
EP [�(X )] ≤ inf

(i),(ii)
EP [�(X )]

� Observation: solution satisfies: (i’)
�
x∈X

2−�(x) = 1
� Enforce via Lagrange multiplier λ∈R:

find stationary point (w.r.t. both � and λ) of L(�,λ) :=
�
x∈X

P(X =x) �(x) + λ
��
x∈X

2−�(x) − 1
�
.
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Proof of Source Coding Theorem
� Solution of the relaxed optimization problem: �(x) = − log2 P(X =x)� �� �

“information content”

∈ R≥0.

� Let’s now constrain �(x) again to integer values ∀x ∈X .
=⇒ lower bound on expected bit rate (“the bad news”):

EP
�
|C(X )|

�
≥ EP

�
− log2 P(X =x)

�
� �� �

HP(X )

∀ uniquely decodable C .

� Upper bound on the optimal expected bit rate (“the good news”):
� Shannon Code: set �(x) :=

�
− log2 P(X =x)

�
∈ N.

� Satisfies Kraft inequality:
�

x∈X 2−�− log2 P(X=x)� ≤ �x∈X 2 log2 P(X=x) = 1.
=⇒ ∃ uniquely decodable code C� with:

|C�(x)| = �(x) < − log2 P(X =x) + 1 ∀x ∈ X .
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Quantifying Uncertainty in Bits (for Discrete Data)
� Information content: − log2 P(X =x): The (amortized) bit rate for encoding the

given message x with a code that is optimal (in expectation) for the data source P .
� Entropy: HP(X ) = EP

�
− log2 P(X )

�
≡ H

�
P(X )

�
≡ H [P ]: The expected bit rate for

encoding a (random) message from data source P with a code that is optimal for P .
= How many bits does receiver need (in expectation) to reconstruct X?
= How many bits does receiver need (in expectation) to resolve any uncertainty about X?

� Cross entropy: H [P ,Q] = EP
�
− log2 Q(X )

�
≥ H [P ]:

The expected bit rate when encoding a message from data source P with a code that is
optimal for a model Q of the data source (=⇒ practically achievable expected bit rate).
→ We’d want to minimize this over the model Q. → Maximum likelihood estimation.

� Kullback-Leibler divergence: DKL(P �Q) = H [P ,Q] − H [P ] = EP
�
− log2

Q(X )
P(X )

�
≥ 0:

Overhead (in expected bit rate) due to a mismatch between the true data source P and
its model Q (also called “relative entropy”).
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2
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Example 1: Text Compression With GPT-2
Autoregressive language model:
� Message x is a sequence of tokens: x = (x1, x2, . . . , xn).
� P(X) = P(X1) P(X2 |X1) P(X3 |X1,X2) P(X4 |X1,X2,X3) . . . P(Xn |X1,X2, . . .Xn−1).

Compression strategy:
1. Encode x1 with an optimal code for P(X1). → EP [#bits] < H

�
P(X1)

�
+ 1

2. Encode x2 with an optimal code for P(X2 |X1 =x1). → EP [#bits] < H
�
P(X2 |X1 =x1)

�
+1

3. And so forth ...

Technicalities:
� Up to 1 bit of overhead per token? → Use a stream code: amortizes over tokens.
� The model expects that x1 = �beginning of sequence�. → Redundant, don’t encode.
� How does the decoder know when to stop? → Use an �end of sequence� token.
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https://bamler-lab.github.io/bootcamp24 → Colab notebook

Takeaways From Our Code Example
� Near-optimal compression performance is achievable in practice.

=⇒ Information content accurately estimates #bits needed in practice (even if it’s fractional).

� Data compression is intimately tied to probabilistic generative modeling.
� “Don’t transmit what you can predict.” =⇒ generative modeling
� But still allow communicating things we wouldn’t have predicted. =⇒ probabilistic modeling

� Decoding ≈ generation (= sampling from a probabilistic generative model P):
� To sample a token xi , one injects randomness into P(Xi |X1:i−1 =x1:i−1).
� To decode a token xi , one injects compressed bits into (a code for) P(Xi |X1:i−1 =x1:i−1).
� Decoding from a random bit string would be exactly equivalent to sampling from P.

� Data compression is highly sensitive to tiny model changes (e.g., inconsistent rounding).
� Compression codes C are “very non-continuous” (because they remove redundancies by design).

=⇒ True data compression usually makes it harder to process information.
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Example 2: Compression With of Neural Networks

(grid points)

Alexander Conzelmann, 
RB; coming soon]

� Method: quantize network weights (≈ round to a discrete grid), then compress losslessly.
� Observation: information content remains meaningful even in the regime � 1 bit.

Robert Bamler · Universität Tübingen · Tutorial on Information Theory With Applications to Data Compression · IMPRS-IS Boot Camp 2024 · slides and code available at https://bamler-lab.github.io/bootcamp24 | 23



Agenda

1
Theory of

Communication

←−−−−−−−−−−−→
2

Applications to
Machine Learning

Derive & interpret:
� information content
� (conditional) entropy
� KL divergence
� mutual information
� data processing ineq.

Brief code example of
data compression with
a deep-learning model

(GPT-2).

When are
information-
theoretical

metrics useful?

Limitations of
information
theory, and

common pitfalls.

Robert Bamler · Universität Tübingen · Tutorial on Information Theory With Applications to Data Compression · IMPRS-IS Boot Camp 2024 · slides and code available at https://bamler-lab.github.io/bootcamp24 | 24

Joint, Marginal, and Conditional Entropy
Consider a data source P(X ,Y ) that generates pairs (x , y) ∼ P :

P(X ,Y ) = P(X ) P(Y |X ) = P(Y ) P(X |Y ).

� Joint information content, i.e., information content of the entire message (x , y):
− log2 P(X =x ,Y =y) = − log2 P(X =x) − log2 P(Y =y |X =x).

� Joint entropy:
HP
�
(X ,Y )

�
= EP(X ,Y )[− log2 P(X ,Y )] = EP(X ) P(Y |X )[ − log2 P(X ) − log2 P(Y |X ) ]
= EP(X )[− log2 P(X )]
� �� �
(marginal) entropy HP(X )

+ Ex∼P(X )
�

EP(Y |X=x)[− log2 P(Y |X =x)]
� �� �

=: HP(Y |X=x) = entropy of the
conditional distribution P(Y |X =x)

�

� �� �
=: conditional entropy HP(Y |X )

;

� HP
�
(X ,Y )

�
= HP(X ) + HP(Y |X ) = HP(Y ) + HP(X |Y )
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Mutual Information
Reminder: HP(Y |X ) := EP [ − log2 P(Y |X ) ] = Ex∼P(X )

�
EP(Y |X=x)[− log2 P(Y |X =x)]
� �� �

= HP(Y |X =x) = entropy of the
conditional distribution P(Y |X =x)

�
;

HP
�
(X ,Y )

�
= HP(X ) + HP(Y |X ).

Let’s encode a given message (x , y): Expected bit rate:
(a) encode x with optimal code for P(X ); then

enocde y with optimal code for P(Y |X =x); HP(X ) HP(Y |X )

(b) encode (x , y) using an optimal code
for the data source P(X ,Y ); HP

�
(X ,Y )

�

(c) encode x with optimal code for P(X |Y =y); then
enocde y with optimal code for P(Y ). HP(X |Y ) HP(Y )

(d) encode x with optimal code for P(X ); then
enocde y with optimal code for P(Y ); HP(X ) HP(Y )
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Interpretations of the Mutual Information IP(X ; Y )
HP
�
(X ,Y )

�
I 1�
P

HP(X ) HP(Y )

HP(X ) HP(Y |X ) I 2�
P

I 3�
P HP(X |Y ) HP(Y )

The following expressions for IP(X ; Y ) are equivalent:

1� IP(X ; Y ) = HP(X ) + HP(Y ) − HP
�
(X ,Y )

�

= DKL
�
P(X ,Y )

���� P(X ) P(Y )
�

≥ 0
Interpretation: how much would ignoring correlations
between X ,Y hurt expected compression performance?

2� IP(X ; Y ) = HP(Y ) − HP(Y |X )
Interpretation: how many bits of information does
knowledge of X tell us about Y (in expectation)?
(reduction of uncertainty, “expected information gain”)

3� IP(X ; Y ) = HP(X ) − HP(X |Y )
Interpretation: how many bits of information does
knowledge of Y tell us about X (in expectation)?
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Note: “in expectation” is an
important qualifier here.
Conditioning on a specific x
can increase the entropy of Y :
HP(Y |X ) ≤ HP(Y ) (always),

but:
HP(Y |X =x) > HP(Y ) is

possible for some (atypical) x .

Continuous Data (Pedestrian Approach)
Recall: optimal lossless code Copt for a data source P : HP(X ) ≤ EP

�
|Copt(X )|

�
< HP(X ) + 1

� Lossless compression is only possible on a discrete (i.e., countable) message space X .
(Because X lossless code C (injective)−−−−−−−−−−−−−−→ {0, 1}∗ injective−−−−−→ N.)

Simple lossy compression of a message X ∈ Rn: (an “act of desperation” — M.P.)
� Require that reconstruction X � satisfies |X �

i − Xi | < δ
2 ∀i ∈ {1, . . . , n} for some δ > 0.

� Let X̂ := δ × round
�1

δX
�
. =⇒ |X̂i − Xi | ≤ δ

2 ∀i .
� Compress X̂ ∈ δZn losslessly using induced model P(X̂ ). =⇒ Reconstruction X � = X̂ .

� P(X̂ = x̂) = P
�
X ∈

n×
i=1

�
x̂i − δ

2, x̂i + δ
2
��

=
�

×n
i=1
�
x̂i− δ

2 ,x̂i+ δ
2
� p(x) dnx ≈ δnp(x̂) + o(δn)

� HP(X̂ ) ≈ −
�

x̂∈δZn
δnp(x̂) log2

�
δnp(x̂)

�

≈ −
�

p(x)
�
log2 p(x) + n log2 δ

�
dnx =

“differential entropy” hP(X )� �� �
EP [− log2 p(X )] +

δ→0−−→∞� �� �
n log2(1/δ)
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How Does Discretization Relate to IMPRS-IS?
Physics in the 19th century:
� Electrodynamics: unified theory of electric+magnetic forces (Lorentz, Maxwell, ∼1860)

−→ understanding of light −→ radio communication (Marconi, ∼1895)
� Thermodynamics: temperature, heat, entropy, steam engine (Carnot process)

Problem: these two theories are incompatible when trying to explain the spectrum of the sun.
� “Classical” theory: it should radiate ∞ energy (“ultraviolet catastrophe”).

� Electrodynamics: energy Ef of electromagnetic field at frequency f is a continuous quantity ∀f .
� Thermodynamics: thus, in thermodynamic equilibrium, E[Ef ] = 1

2kBT ∀f .
� Observation: OK for low frequencies (∃ < ∞), wrong for high frequencies (∃ ∞).
� Max Planck, 1900: discrepancies can be resolved if we assume that Ef ∈ hf Z ∀f .

� Quantum mechanics becomes relevant on energy scales E � hf , with the Planck constant
h ≈ 6.626×10−34 J

Hz; foundation of modern chemistry, semiconductor industry, ...
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Examples of Differential Entropies
� Uniform distribution: P(X ) = U(X )

� Density: p(x) = 1
Vol(X ) ∀x ∈ X

� Differential entropy: hP(X ) = EP
�
− log2 p(X )

�
= EP

�
− log2

1
Vol(X )

�
= log2

�
Vol(X )

�

� Note: if Vol(X ) < 1 then hP(X ) < 0.
→ Nothing to see here, hP is only meaningful up to an infinite additive constant.

� Normal distribution: P(X ) = N (µ,Σ) (with X , µ ∈ Rn and Σ ∈ Rn×n)

� Density: p(x) = N (x ;µ,Σ) = 1�
det(2π Σ)

exp
�
−1

2(x − µ)� Σ−1 (x − µ)
�

� Differential entropy: hP(X ) = EP
�
− log2 p(X )

�
= 1

2 log2(det Σ) + n
2 log2(2πe)
� �� �

const.
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KL-Divergence Between Continuous Distributions
� Differential entropy (reminder): hP(X ) = EP [− log2 p(X )]

→ Relation to entropy of discretization X̂ : HP(X̂ ) ≈ hP(X ) + n log2(1/δ) δ→0−−→ ∞
� Differential cross entropy (less common): h

�
P(X ),Q(X )

�
= EP [− log2 q(X )]

→ Relation to discretization: H
�
P(X̂ ),Q(X̂ )

�
≈ h
�
P(X ),Q(X )

�
+ n log2(1/δ) δ→0−−→∞

� Kullback-Leibler divergence between discretized distributions P(X̂ ) and Q(X̂ ):
DKL
�
P(X̂ )

����Q(X̂ )
�

= H
�
P(X̂ ),Q(X̂ )

�
− HP(X̂ )

≈ h
�
P(X ),Q(X )

�
+ n log2(1/δ) −

�
hP(X ) + n log2(1/δ)

�

= EP

�
− log2

q(X )
p(X )

�
=: DKL

�
P(X )

����Q(X )
� (possibly)

< ∞

=⇒ Interpretation: DKL(P � Q) = modeling overhead, in the limit of infinitely fine quantization.

� Generalization (density-free): DKL(P � Q) = −
�

log2

�
dQ
dP

�
dP
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(Variational) Information Bottleneck
� Example: β-variational autoencoder (similar for supervised models (Alemi et al., ICLR 2017))

� Loss function: Ex∼data
�
EQ(Z |X=x)

�
− log P(X =x |Z )

�
+ βDKL

�
Q(Z |X =x)

����P(Z )
��

� DKL( . . .� . . . ) =
information in z ∼ Q(Z |X =x)
for someone who doesn’t know x

(i.e., they only know P(Z ))
−

information in z ∼ Q(Z |X =x)
for someone who knows x

(i.e., they know Q(Z |X =x))

=⇒
�

Capture as much (x -independent) information about z in the prior P(Z ) as possible.
Encode as little (unnecessary) information in Q(Z |X =x) as possible.
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Remark: Data Compression With VAEs
� So far, no compression: Z still takes up lots of memory (even if its inf. content is low).
� Real compression has to actually reduce Z to its information content: entropy coding

Ballé et al., ICLR 2017
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Rate/Distortion Trade-off
� Tuning β allows us to trade off bit rate against distortion.
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[Yang, RB, Mandt, NeurIPS 2020]

originals
(uncompressed)



BPG 4:4:4
left: 0.143 bit/pixel
right: 0.14 bit/pixel

VAE-based
left: 0.142 bit/pixel
right: 0.13 bit/pixel
[Yang, RB, Mandt,
NeurIPS 2020]

JPEG
left: 0.142 bit/pixel
right: 0.14 bit/pixel



Agenda

1
Theory of

Communication

←−−−−−−−−−−−→
2

Applications to
Machine Learning

Derive & interpret:
� information content
� (conditional) entropy
� KL divergence
� mutual information
� data processing ineq.

Brief code example of
data compression with
a deep-learning model

(GPT-2).

When are
information-
theoretical

metrics useful?

Limitations of
information
theory, and

common pitfalls.
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Mutual Information for Continuous Random Vars

IP(X ; Y ) = DKL
�
P(X ,Y )

����P(X ) P(Y )
�

= EP

�
− log2

p(X ) p(Y )
p(X ,Y )

�
(if densities p exist)

� Exercise: let X � = f (X ), Y � = g(Y ), where f and g are differentiable injective functions.
Convince yourself that IP is independent of representation, i.e., IP(X �; Y �) = IP(X ; Y ).

Example 1a:
� P(X ) = P(Y ) = U([−1, 1)) =⇒ hP(X ) = hP(Y ) = log2(2) = 1.

� P(Y |X ) =
�
U([−1, 0)) if X < 0;
U([0, 1)) if X ≥ 0.

=⇒ hP(Y |X ) = Ex∼P(X )
�
hP(Y |X =x)

�
= log2(1) = 0.

� Mutual information: IP(X ; Y ) = hP(Y ) − hP(Y |X ) = 1 − 0 = 1 bit.
� Interpretation: observing X tells us (only) the sign of Y . =⇒ 1 bit of information.
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Mutual Information for Continuous Random Vars
Example 1b: non-uniform P(X ).

� p(y) =
�

α if y ∈ [−1, 0);
1 − α if y ∈ [0, 1).

(for α ∈ [0, 1])

⇒ hP(Y ) = −
� 1

−1
p(y) log2 p(y) dy

= −α log2(α) − (1 − α) log2(1 − α) =: H2(α)

� P(Y |X ) =
�
U([−1, 0)) if X < 0;
U([0, 1)) if X ≥ 0.

(as before)

⇒ hP(Y |X ) = 0 (as before)
� Mutual information: IP(X ; Y ) = hP(Y ) − hP(Y |X ) = H2(α) − 0 = H2(α) ≤ 1 bit.
� Interpretation: observing X still tells us sign(Y ) with certainty, but sign(Y ) now carries

less than one bit of information (in expectation) if α �= 1
2.
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Mutual Information for Continuous Random Vars
Example 1c: back to uniform P(X ), but different P(Y |X ):
� P(X ) = U([−1, 1));

P(Y |X ) =




U
��

−α
2 , 1 − α

2
��

if X ≥ 0;
U
��

−1 + α
2 ,

α
2
��

if X < 0.

Method 1: IP(X ; Y ) = hP(Y ) − hP(Y |X )
� hP(Y |X ) = 0 as before.

� p(y) =
�

1
2 if y ∈

�
α
2 , 1 − α

2
�

∪
�
−1 + α

2 ,−α
2
�
;

1 if y ∈
�
−α

2 ,
α
2
�
.

=⇒ hP(Y ) = −
� 1−α

2
α
2

1
2 log2

�1
2
�
dy −

� −α
2

−1+α
2

1
2 log2

�1
2
�
dy −

� α
2

−α
2
1 log2(1) dy = 1 − α.

� Interpretation: sign(Y ) has one bit of entropy again, but knowing X no longer tells us
sign(Y ) with certainty, it only improves our odds of predicting it.
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Mutual Information for Continuous Random Vars
Example 1c: back to uniform P(X ), but different P(Y |X ):
� P(X ) = U([−1, 1));

P(Y |X ) =




U
��

−α
2 , 1 − α

2
��

if X ≥ 0;
U
��

−1 + α
2 ,

α
2
��

if X < 0.

Method 2: IP(X ; Y ) = hP(X ) − hP(X |Y )

� P(X |Y ) =





U([0, 1)) if Y ∈
�

α
2 , 1 − α

2
�
;

U([−1, 1)) if Y ∈
�
−α

2 ,
α
2
�
;

U([−1, 0)) if Y ∈
�

α
2 − 1,−α

2
�
.

⇒ hP(X |Y ) = Ey∼P(Y )
�
hP(X |Y =y)

�
= 1

2(1−α) log2(1)+α log2(2)+ 1
2(1−α) log2(1) = α.

� Interpretation: sign(X ) has one bit of entropy, but a fraction α of possible observations
of Y won’t tell us sign(X ) at all (while the otherother observations of Y tell it with certainty).
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Symmary of Example 1
The mutual information IP(X ; Y ) takes into account:

Example 1a:

� how much new information
an observation of X reveals
about Y (and vice versa) ...

Example 1b:

� ... in comparison to
how much we’d know
about Y anyway;

Example 1c (Methods 1 & 2):

� with what certainty the new
information is revealed; and

� how probable it is to make
an informative observation.
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Example 2: Gaussian Signal With Gaussian Noise
Consider an analog signal x ∼ N (0,σ2

s ), sent over a noisy channel (e.g., voltage on a wire).
=⇒ Receiver receives a somewhat corrupted signal: y ∼ N (x ,σ2

n).
Mutual information: IP(X ; Y ) = hP(Y ) − hP(Y |X )

� p(y) = EP(X )
�
p(y |X )

�
=
�
N (x ; 0, σ2

s ) N (y ; x ,σ2
s ) dx = N (y ; 0,σ2

s + σ2
n)

=⇒ IP(X ; Y ) = hP(Y ) − hP(Y |X ) = 1
2 log2(σ2

s + σ2
n) − 1

2 log2(σ2
n) = 1

2 log2

�
1 + σ2

s
σ2

n

�
.

Interpretation: σ2
s/σ2

n is the signal-to-noise ratio (SNR).
� For SNR → 0, we have IP(X ; Y ) → 0; =⇒ receiver receives no meaningful information.
� But, as long as SNR > 0, one can still extract some information from the received signal.
� In the theory of channel coding (aka error correction), P(Y |X ) models a communication

channel. Its channel capacity C := supP(X ) IP(X ; Y ) is the number of bits that can be
transmitted noise-free per invocation of the noisy channel (in the limit of long messages).
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Data Processing Inequality I: Intuition
Remember when we were all still young and looking at slide 40?

IP(X ; Y ) = DKL
�
P(X ,Y )

����P(X ) P(Y )
�

= EP

�
− log2

p(X ) p(Y )
p(X ,Y )

�
(if densities p exist)

� Exercise: let X � = f (X ), Y � = g(Y ), where f and g are differentiable injective functions.
Convince yourself that IP is independent of representation, i.e., IP(X �; Y �) = IP(X ; Y ).

Question: what do non-injective transformations
do to the mutual information?

� Example: start from last slide:
X ∼ N (0,σ2

s ); Y |X ∼ N (X ,σ2
n).

� Then, consider Z := Y 2.

� Is IP(X ; Z )
� larger than,

smaller than,
or equal to

�
IP(X ; Y )?
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Data Processing Inequality II: Formalization
Consider a Markov chain: X −→ Y −→ Z , i.e., P(X ,Y ,Z ) = P(X ) P(Y |X ) P(Z |Y ).

⇔ X and Z are conditionally independent given Y (i.e., P(X ,Z |Y ) = P(X |Y ) P(Z |Y )).
⇔ Z −→ Y −→ X is a Markov chain (i.e., P(X ,Y ,Z ) = P(Z ) P(Y |Z ) P(X |Y )).

Theorem (data processing inequality): “once we’ve removed some information from a
random variable, further processing cannot restore the removed information.”
� IP(X ; Y ) ≥ IP(X ; Z ) and IP(Y ; Z ) ≥ IP(X ; Z ) (∀ Markov chains X → Y → Z ).

Proof:
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Inf.-Theoretical Bounds on Model Performance
Consider a classification task: assign label Y to input data X : learn P(Y |X )
� Data generative distribution: P(X ,Yg.t.) = P(Yg.t.) P(X |Yg.t.)

=⇒ Markov chain: Yg.t.
data gen.−−−−−→ X classifier−−−−−→ Y

� Perfect classification would mean Y = Yg.t. =⇒ IP(Yg.t.; Y ) = HP(Yg.t.) − HP(Yg.t. |Y )� �� �
=0

� More generally: high accuracy =⇒ high IP(Yg.t.; Y ) =⇒ high IP(Yg.t.; X ) ≥ IP(Yg.t.; Y ):
Bound: accuracy ≤ f −1�IP(Yg.t.; X )

�
where f (α) = HP(Yg.t.) + α log2 α + (1 − α) log2

1−α
#classes−1

[Meyen, 2016 (MSc thesis advised by U. von Luxburg)]

� Now introduce a preprocessing step: Yg.t.
data gen.−−−−−→ X preprocessing−−−−−−−→ Z classifier−−−−−→ Y

� Theoretical bound now: accuracy ≤ f −1�IP(Yg.t.; Z )
�

≤ f −1�IP(Yg.t.; X )
�

(by information processing inequality and monotonicity of f ).
=⇒ Information theory suggests: preprocessing can only hurt (bound on) downstream performance.
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Limitations of Information Theory
[Tim Xiao, RB, ICLR 2023]

� Observation: classification accuracy decreases for
very large rate (= bound on mutual information).

� Explanation: information theory doesn’t consider
(computational/modeling) complexity.

� Forcing the encoder to throw away some of the
(least relevant) information can make downstream
tasks easier in practice.

� Note: it’s the information bottleneck that can make
downstream processing easier, not any (possible)
dimensionality reduction.
(In fact, many downstream tasks become easier in
higher dimensions → kernel trick.)
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Be Creative! You Now Have the Tools for It.

[Hanqi Zhou, RB, CM Wu, Á Tejero-Cantero, ICLR 2024]

We want to quantify:
� How specific are learner

representations s for their learner �?
IP(s; �) = HP(�) − HP(� | s)

� How consistent are representations
for a fixed learner if we train on
different subsets of time steps?
E�sub

�
IP(s�; �sub)

�

� Disentanglement, i.e., how
informative is each component
of s ∈ Rn about learner identity �?
HP(s) − HP(s | �)diag
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